Skip to main content

A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11554))

Abstract

The lack of training data is an obstacle to build satisfactory multimodal emotion recognition models. Generative adversarial network (GAN) has recently shown great successes in generating realistic-like data. In this paper, we propose a GAN-based data augmentation method for enhancing the performance of multimodal emotion recognition models. We adopt conditional Boundary Equilibrium GAN (cBEGAN) to generate artificial differential entropy features of electroencephalography signal, eye movement data and their direct concatenations. The main advantage of cBEGAN is that it can overcome the instability of conventional GAN and has very quick converge speed. We evaluate our proposed method on two multimodal emotion datasets. The experimental results demonstrate that our proposed method achieves 4.6% and 8.9% improvements of mean accuracies on classifying three and five emotions, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://bcmi.sjtu.edu.cn/~seed/index.html.

References

  1. Berthelot, D., Schumm, T., Metz, L.: BEGAN: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  2. Duan, R.N., Zhu, J.Y., Lu, B.L.: Differential entropy feature for EEG-based emotion classification. In: IEEE EMBS NER 2013, pp. 81–84. IEEE (2013)

    Google Scholar 

  3. Dyk, D.A.V., Meng, X.L.: The art of data augmentation. J. Comput. Graph. Stat. 10(1), 1–50 (2001)

    Article  MathSciNet  Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS 2014, pp. 2672–2680 (2014)

    Google Scholar 

  5. Hartmann, K.G., Schirrmeister, R.T., Ball, T.: EEG-GAN: generative adversarial networks for electroencephalograhic (EEG) brain signals (2018)

    Google Scholar 

  6. Krell, M.M., Su, K.K.: Rotational data augmentation for electroencephalographic data. In: Engineering in Medicine and Biology Society, pp. 471–474 (2017)

    Google Scholar 

  7. Liu, W., Zheng, W.-L., Lu, B.-L.: Emotion recognition using multimodal deep learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 521–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9_58

    Chapter  Google Scholar 

  8. Lotte, F.: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces. Proc. IEEE 103(6), 871–890 (2015)

    Article  Google Scholar 

  9. Lu, Y., Zheng, W.L., Li, B., Lu, B.L.: Combining eye movements and EEG to enhance emotion recognition. In: IJCAI 2015, pp. 1170–1176 (2015)

    Google Scholar 

  10. Luo, Y., Lu, B.L.: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In: IEEE EMBS 2018, pp. 2535–2538. IEEE (2018)

    Google Scholar 

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  12. Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR 2016 (2016)

    Google Scholar 

  14. Wang, F., Zhong, S., Peng, J., Jiang, J., Liu, Y.: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 82–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_8

    Chapter  Google Scholar 

  15. Zhao, L.M., Li, R., Zheng, W.L., Lu, B.L.: Classification of five emotions from EEG and eye movement signals: complementary representation properties. In: IEEE NER 2019. IEEE (2019)

    Google Scholar 

  16. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transact. Auton. Ment. Dev. 7(3), 162–175 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Key Research and Development Program of China (Grant No. 2017YFB1002501), the National Natural Science Foundation of China (Grant No. 61673266), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Liang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Y., Zhu, LZ., Lu, BL. (2019). A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22796-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics