Skip to main content

A Cortical-Inspired Model for Orientation-Dependent Contrast Perception: A Link with Wilson-Cowan Equations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

We consider a differential model describing neuro-physiologi-cal contrast perception phenomena induced by surrounding orientations. The mathematical formulation relies on a cortical-inspired modelling [11] largely used over the last years to describe neuron interactions in the primary visual cortex (V1) and applied to several image processing problems [14, 15, 21]. Our model connects to Wilson-Cowan-type equations [26] and it is analogous to the one used in [3, 4, 16] to describe assimilation and contrast phenomena, the main novelty being its explicit dependence on local image orientation. To confirm the validity of the model, we report some numerical tests showing its ability to explain orientation-dependent phenomena (such as grating induction) and geometric-optical illusions [18, 24] classically explained only by filtering-based techniques [7, 20].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For our comparisons we used the ODOG and BIWaM codes freely available at https://github.com/TUBvision/betz2015_noise.

References

  1. Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-inspired geometry for contour perception and motion integration. JMIV 49(3), 511–529 (2014)

    Article  Google Scholar 

  2. Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis approach to retinal vessel tracking. JMIV 49(3), 583–610 (2014)

    Article  Google Scholar 

  3. Bertalmío, M.: From image processing to computational neuroscience: a neural model based on histogram equalization. Front. Comput. Neurosci. 8, 71 (2014)

    Google Scholar 

  4. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bertalmío, M., Cowan, J.D.: Implementing the retinex algorithm with Wilson-Cowan equations. J. Physiol. Paris 103(1), 69–72 (2009)

    Article  Google Scholar 

  6. Blakeslee, B., Cope, D., McCourt, M.E.: The oriented difference of Gaussians (ODOG) model of brightness perception: overview and executable mathematica notebooks. Behav. Res. Methods 48(1), 306–312 (2016)

    Article  Google Scholar 

  7. Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vision Res. 39(26), 4361–4377 (1999)

    Article  Google Scholar 

  8. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 356, 299–330 (2001)

    Article  Google Scholar 

  9. Bressloff, P.C., Cowan, J.D.: An amplitude equation approach to contextual effects in visual cortex. Neural Comput. 14(3), 493–525 (2002)

    Article  Google Scholar 

  10. Carandini, M., et al.: Do we know what the early visual system does? J. Neurosci. 25(46), 10577–10597 (2005)

    Article  Google Scholar 

  11. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  12. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  13. Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007)

    Article  Google Scholar 

  14. Duits, R., Franken, E.: Left-invariant parabolic evolutions on \(SE(2)\) and contour enhancement via invertible orientation scores. Part I: linear left-invariant diffusion equations on \(SE(2)\). Quart. Appl. Math. 68(2), 255–292 (2010)

    Article  MathSciNet  Google Scholar 

  15. Franceschiello, B., Sarti, A., Citti, G.: A neuromathematical model for geometrical optical illusions. JMIV 60(1), 94–108 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kim, J., Batard, T., Bertalmío, M.: Retinal processing optimizes contrast coding. J. Vis. 16(12), 1151–1151 (2016)

    Article  Google Scholar 

  17. Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío, M., Malo, J.: Derivatives and inverse of cascaded linear+nonlinear neural models. PLOS One 13(10), 1–49 (2018)

    Article  Google Scholar 

  18. McCourt, M.E.: A spatial frequency dependent grating-induction effect. Vis. Res. 22(1), 119–134 (1982)

    Article  Google Scholar 

  19. Olshausen, B.A., Field, D.J.: Vision and the coding of natural images: the human brain may hold the secrets to the best image-compression algorithms. Am. Sci. 88(3), 238–245 (2000)

    Article  Google Scholar 

  20. Otazu, X., Vanrell, M., Parraga, C.A.: Multiresolution wavelet framework models brightness induction effects. Vis. Res. 48(5), 733–751 (2008)

    Article  Google Scholar 

  21. Prandi, D., Gauthier, J.P.: A Semidiscrete Version of the Petitot Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition. SpringerBriefs in Mathematics. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-78482-3

    Book  MATH  Google Scholar 

  22. Sarti, A., Citti, G.: The constitution of visual perceptual units in the functional architecture of V1. J. comput. Neurosci. 38(2), 285–300 (2015)

    Article  MathSciNet  Google Scholar 

  23. Self, M.W., et al.: Orientation-tuned surround suppression in mouse visual cortex. J. Neurosci. 34(28), 9290–9304 (2014)

    Article  Google Scholar 

  24. Weintraub, D.J., Krantz, D.H.: The Poggendorff illusion: amputations, rotations, and other perturbations. Attent. Percept. Psychol. 10(4), 257–264 (1971)

    Article  Google Scholar 

  25. Westheimer, G.: Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vis. Res. 48(20), 212–2142 (2008)

    Article  Google Scholar 

  26. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. BioPhys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  27. Yeonan-Kim, J., Bertalmío, M.: Retinal lateral inhibition provides the biological basis of long-range spatial induction. PLOS One 11(12), 1–23 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Calatroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Prandi, D. (2019). A Cortical-Inspired Model for Orientation-Dependent Contrast Perception: A Link with Wilson-Cowan Equations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics