Skip to main content

Explaining Axiom Pinpointing

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11560))

Abstract

Axiom pinpointing refers to the task of highlighting (or pinpointing) the axioms in an ontology that are responsible for a given consequence to follow. This is a fundamental task for understanding and debugging very large ontologies. Although the name axiom pinpointing was only coined in 2003, the problem itself has a much older history, even if considering only description logic ontologies. In this work, we try to explain axiom pinpointing: what it is; how it works; how it is solved; and what it is useful for. To answer this questions, we take a historic look at the field, focusing mainly on description logics, and the specific contributions stemming from one researcher, who started it all in more than one sense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    I am an informal (some will say impolite) Mexican, who insists on using the term Franz when referring to Franz Baader. I will do this often from now on. Please bear with me.

  2. 2.

    We use the infix notation for the consequence relation.

  3. 3.

    I rather prefer the name MinA coined by Franz Baader as we started our work on this topic. However, despite my best efforts, justification has become the de facto standard name in DLs. Even I must admit that it is catchier.

  4. 4.

    In the original paper [5], this was called a clash formula, since it explains the clashes obtained by the algorithm. The name was later changed to pinpointing formula to reflect its more general purpose.

  5. 5.

    I still remember when I managed to construct the first counterexample just before the deadline for submitting the paper. Imagine a scared first-year PhD student interrupting his supervisor’s holidays to tell him the bad news.

  6. 6.

    As a historical remark, an important reason why I ended up working with Franz was because I fell in love with automata theory while I was doing my masters in Dresden. Being the Chair for Automata Theory, it only made sense to ask him for a topic. Little did I know at the time where this would take me.

  7. 7.

    Also known, and herewith referred as Meng.

  8. 8.

    Imagine someone making an insurance claim after having a finger amputated. If the insurer makes this kind of error, they might end of paying a larger lump for an amputated arm.

  9. 9.

    Formally, a repair is a maximal subontology that does not entail the consequence. This is the dual notion of a justification, which is also studied in variations of axiom pinpointing in different fields.

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  3. Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fundamenta Informaticae 57(2–4), 247–279 (2003). http://content.iospress.com/articles/fundamenta-informaticae/fi57-2-4-08

  4. Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSpace results for description logics. Inf. Comput. 206(9–10), 1045–1056 (2008). https://doi.org/10.1016/j.ic.2008.03.006

    Article  MathSciNet  MATH  Google Scholar 

  5. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reason. 14(1), 149–180 (1995). https://doi.org/10.1007/BF00883932

    Article  MathSciNet  Google Scholar 

  6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  7. Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale ontological reasoning in the presence of access restrictions to the ontology’s axioms. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_4

    Chapter  Google Scholar 

  8. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences of semantic web ontologies. J. Web Semant. 12, 22–40 (2012). https://doi.org/10.1016/j.websem.2011.11.006

    Article  Google Scholar 

  9. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2018), pp. 319–328. AAAI Press (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056

  10. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_25

    Chapter  Google Scholar 

  11. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in \(\cal{EL}^+\). In: Parsia et al. [53]. http://ceur-ws.org/Vol-189/submission_8.pdf

  12. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73099-6_4

    Chapter  MATH  Google Scholar 

  13. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 226–241. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_19

    Chapter  Google Scholar 

  14. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reason. 45(2), 91–129 (2010). https://doi.org/10.1007/s10817-010-9181-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput. 20(1), 5–34 (2010). https://doi.org/10.1093/logcom/exn058

    Article  MathSciNet  MATH  Google Scholar 

  16. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}\). In: Calvanese, D., et al. (eds.) Proceedings of the 2007 International Workshop on Description Logics (DL 2007). CEUR Workshop Proceedings, vol. 250. CEUR-WS.org (2007)

    Google Scholar 

  17. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74565-5_7

    Chapter  Google Scholar 

  18. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\cal{EL}^+\). In: Cornet, R., Spackman, K.A. (eds.) Proceedings of the Third International Conference on Knowledge Representation in Medicine. CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). http://ceur-ws.org/Vol-410/Paper01.pdf

  19. Bertossi, L.E., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300. Springer, Heidelberg (2005). https://doi.org/10.1007/b104925

    Book  MATH  Google Scholar 

  20. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 775–781. AAAI Press/IJCAI (2013). http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904

  21. Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic \(\cal{BALC}\). In: Ortiz and Schneider [51]. http://ceur-ws.org/Vol-2211/paper-09.pdf

  22. Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic \(\cal{BALC}\). In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS, vol. 11468, pp. 339–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_22

    Chapter  Google Scholar 

  23. Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique for reasoning in expressive description logics. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 798–804. AAAI Press/IJCAI (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-140

  24. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)

    Article  MathSciNet  Google Scholar 

  25. Ceylan, İ.İ., Mendez, J., Peñaloza, R.: The Bayesian ontology reasoner is BORN! In: Dumontier, M., et al. (eds.) Informal Proceedings of the 4th International Workshop on OWL Reasoner Evaluation (ORE-2015). CEUR Workshop Proceedings, vol. 1387, pp. 8–14. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1387/paper_5.pdf

  26. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic \({\cal{BEL}}\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 480–494. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_37

    Chapter  Google Scholar 

  27. Ceylan, İ.İ., Peñaloza, R.: Reasoning in the description logic \(\cal{BEL}\) using Bayesian networks. In: Proceedings of the 2014 AAAI Workshop on Statistical Relational Artificial Intelligence. AAAI Workshops, vol. WS-14-13. AAAI (2014). http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8765

  28. Ceylan, İ.İ., Peñaloza, R.: The Bayesian ontology language \(\cal{BEL}\). J. Autom. Reason. 58(1), 67–95 (2017). https://doi.org/10.1007/s10817-016-9386-0

    Article  MathSciNet  Google Scholar 

  29. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

  30. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87993-0_13

    Chapter  Google Scholar 

  31. Donini, F.M., Massacci, F.: Exptime tableaux for \(\cal{ALC}\). Artif. Intell. 124(1), 87–138 (2000). https://doi.org/10.1016/S0004-3702(00)00070-9

    Article  MATH  Google Scholar 

  32. Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics overwords and trees. Fundamenta Informaticae 84(3–4), 305–327 (2008). http://content.iospress.com/articles/fundamenta-informaticae/fi84-3-4-02

  33. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

    Book  MATH  Google Scholar 

  34. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_21

    Chapter  Google Scholar 

  35. Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009). http://ceur-ws.org/Vol-477/paper_24.pdf

  36. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\cal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)

    Google Scholar 

  37. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, University of Maryland College Park, USA (2006)

    Google Scholar 

  38. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_15

    Chapter  Google Scholar 

  39. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes in OWL ontologies. J. Web Semant. 3(4), 268–293 (2005). https://doi.org/10.1016/j.websem.2005.09.005

    Article  Google Scholar 

  40. Kazakov, Y., Skočovský, P.: Enumerating justifications using resolution. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 609–626. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_40

    Chapter  Google Scholar 

  41. Lee, K., Meyer, T.A., Pan, J.Z., Booth, R.: Computing maximally satisfiable terminologies for the description logic \(\cal{ALC}\) with cyclic definitions. In: Parsia et al. [53]. http://ceur-ws.org/Vol-189/submission_29.pdf

  42. Lehmann, K., Peñaloza, R.: The complexity of computing the behaviour of lattice automata on infinite trees. Theor. Comput. Sci. 534, 53–68 (2014). https://doi.org/10.1016/j.tcs.2014.02.036

    Article  MathSciNet  MATH  Google Scholar 

  43. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_9

    Chapter  Google Scholar 

  44. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008). https://doi.org/10.1007/s10817-007-9084-z

    Article  MathSciNet  MATH  Google Scholar 

  45. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic \(\cal{EL}\). In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 107–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_8

    Chapter  MATH  Google Scholar 

  46. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

    Article  Google Scholar 

  47. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in databases. IEEE Data Eng. Bull. 33(3), 59–67 (2010). http://sites.computer.org/debull/A10sept/suciu.pdf

  48. Mencía, C., Marques-Silva, J.: Efficient relaxations of over-constrained CSPs. In: Proceedings of the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014), pp. 725–732. IEEE Computer Society (2014). https://doi.org/10.1109/ICTAI.2014.113

  49. Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic \(\cal{ALC}\). In: Proceedings of The Twenty-First National Conference on Artificial Intelligence (AAAI 2006), pp. 269–274. AAAI Press (2006). http://www.aaai.org/Library/AAAI/2006/aaai06-043.php

  50. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (eds.): OWL 2 Web Ontology Language: Direct Semantics. W3C Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-direct-semantics/

  51. Ortiz, M., Schneider, T. (eds.): Proceedings of the 31st International Workshop on Description Logics (DL 2018). CEUR Workshop Proceedings, vol. 2211. CEUR-WS.org (2018)

    Google Scholar 

  52. Ozaki, A., Peñaloza, R.: Provenance in ontology-based data access. In: Ortiz and Schneider [51]. http://ceur-ws.org/Vol-2211/paper-28.pdf

  53. Parsia, B., Sattler, U., Toman, D. (eds.): Proceedings of the 2006 International Workshop on Description Logics (DL 2006). CEUR Workshop Proceedings, vol. 189. CEUR-WS.org (2006)

    Google Scholar 

  54. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 633–640. ACM (2005). https://doi.org/10.1145/1060745.1060837

  55. Peñaloza Nyssen, R.: Axiom pinpointing in description logics and beyond. Ph.D. thesis, Technische Universität Dresden, Germany (2009). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24743

  56. Peñaloza, R., Mencía, C., Ignatiev, A., Marques-Silva, J.: Lean kernels in description logics. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 518–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_32

    Chapter  Google Scholar 

  57. Peñaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in lightweight description logics. Artif. Intell. 250, 80–104 (2017). https://doi.org/10.1016/j.artint.2017.06.002

    Article  MathSciNet  MATH  Google Scholar 

  58. Porello, D., Troquard, N., Confalonieri, R., Galliani, P., Kutz, O., Peñaloza, R.: Repairing socially aggregated ontologies using axiom weakening. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 441–449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_26

    Chapter  Google Scholar 

  59. Price, C., Spackman, K.: Snomed clinical terms. Br. J. Healthcare Comput. Inf. Manag. 17(3), 27–31 (2000)

    Google Scholar 

  60. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2462–2467. IJCAI (2007). http://ijcai.org/Proceedings/07/Papers/396.pdf

  61. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2

    Article  MathSciNet  MATH  Google Scholar 

  62. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015). https://doi.org/10.3233/SW-140154

    Article  MATH  Google Scholar 

  63. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 466–471. Morgan Kaufmann (1991)

    Google Scholar 

  64. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 355–360. Morgan Kaufmann Publishers Inc. (2003)

    Google Scholar 

  65. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. J. Artif. Intell. 48, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  66. Simancik, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter tractable reasoning in description logics. Artif. Intell. 209, 29–77 (2014)

    Article  MathSciNet  Google Scholar 

  67. Simančík, F.: Consequence-based reasoning for ontology classification. Ph.D. thesis, University of Oxford (2013). https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581368

  68. Suntisrivaraporn, B.: Polynomial time reasoning support for design and maintenance of large-scale biomedical ontologies. Ph.D. thesis, Technische Universität Dresden, Germany (2009). http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928

  69. Suntisrivaraporn, B., Baader, F., Schulz, S., Spackman, K.: Replacing SEP-triplets in SNOMED CT using tractable description logic operators. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 287–291. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73599-1_38

    Chapter  Google Scholar 

  70. Troquard, N., Confalonieri, R., Galliani, P., Peñaloza, R., Porello, D., Kutz, O.: Repairing ontologies via axiom weakening. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1981–1988. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17189

  71. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 183–221 (1986). https://doi.org/10.1016/0022-0000(86)90026-7

    Article  MathSciNet  MATH  Google Scholar 

  72. Xiao, G., et al.: Ontology-based data access: a survey, pp. 5511–5519. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/777

  73. Zese, R., Bellodi, E., Riguzzi, F., Cota, G., Lamma, E.: Tableau reasoning for description logics and its extension to probabilities. Ann. Math. Artif. Intell. 82(1–3), 101–130 (2018). https://doi.org/10.1007/s10472-016-9529-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Peñaloza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peñaloza, R. (2019). Explaining Axiom Pinpointing. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, AY., Wolter, F. (eds) Description Logic, Theory Combination, and All That. Lecture Notes in Computer Science(), vol 11560. Springer, Cham. https://doi.org/10.1007/978-3-030-22102-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22102-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22101-0

  • Online ISBN: 978-3-030-22102-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics