Skip to main content

A Mixture Design of Experiments Approach for Genetic Algorithm Tuning Applied to Multi-objective Optimization

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 991))

Abstract

This study applies mixture design of experiments combined with process variables in order to assess the effect of the genetic algorithm parameters in the solution of a multi-objective problem with weighted objective functions. The proposed method allows defining which combination of parameters and weights should be assigned to the objective functions in order to achieve target results. A study case of a flux cored arc welding process is presented. Four responses were optimized by using the global criterion method and three genetic algorithm parameters were analyzed. The method proved to be efficient, allowing the detection of significant interactions between the algorithm parameters and the weights for the objective functions and also the analysis of the parameters effect on the problem solution. The procedure also proved to be efficient for the definition of the optimal weights and parameters for the optimization of the welding process.

Supported by PDSE-CAPES/Process No 88881.132477/2016-01.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6

    Google Scholar 

  2. Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley, New Jersey (2009)

    Google Scholar 

  3. Heredia-Langner, A., Montgomery, D.C., Carlyle, W.M.: Solving a multistage partial inspection problem using genetic algorithms. Int. J. Product. Res. 40(8), 1923–1940 (2002). https://doi.org/10.1080/00207540210123337

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. Ph.D. thesis, University of Michigan Press (1975). https://doi.org/10.1086/418447

  5. Zain, A.M., Haron, H., Sharif, S.: Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst. Appl. 37(6), 4650–4659 (2010). https://doi.org/10.1016/j.eswa.2009.12.043

    Google Scholar 

  6. Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002). https://doi.org/10.1016/S0967-0661(02)00081-3

  7. Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems 37 (2007). https://doi.org/10.1007/s10898-006-9056-6

  8. Candan, G., Yazgan, H.R.: Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. Int. J. Product. Res. 53(3), 897–915 (2014). https://doi.org/10.1080/00207543.2014.939244

  9. Weise, T., Wu, Y., Chiong, R., Tang, K., Lässig, J.: Global versus local search: the impact of population sizes on evolutionary algorithm performance. J. Global Optim. 1–24 (2016). https://doi.org/10.1007/s10898-016-0417-5

  10. Ortiz, F., Simpson, J.R., Pignatiello, J.J., Heredia-langner, A.: A genetic algorithm approach to multiple-response optimization. J. Qual. Technol. 36(4), 432–450 (2004)

    Google Scholar 

  11. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(February), 122–128 (1986)

    Google Scholar 

  12. Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune them. In: Autonomus Search, Chap. 2, pp. 15–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21434-9

  13. Alajmi, A., Wright, J.: Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int. J. Sustain. Built Environ. 3(1), 18–26 (2014). https://doi.org/10.1016/j.ijsbe.2014.07.003

    Google Scholar 

  14. Fernandez-Prieto, J.a., Canada-Bago, J., Gadeo-Martos, M.a., Velasco, J.R.: Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads. Appl. Soft Comput. J. 12(4), 1875–1883 (2012). https://doi.org/10.1016/j.asoc.2012.04.018

  15. Núñez-Letamendia, L.: Fitting the control parameters of a genetic algorithm: an application to technical trading systems design. Eur. J. Oper. Res. 179, 847–868 (2007). https://doi.org/10.1016/j.ejor.2005.03.067

    Google Scholar 

  16. Costa, C.B.B., Rivera, E.A.C., Rezende, M.C.A.F., Maciel, M.R.W., Filho, R.M.: Prior detection of genetic algorithm significant parameters: coupling factorial design technique to genetic algorithm. Chem. Eng. Sci. 62, 4780–4801 (2007). https://doi.org/10.1016/j.ces.2007.03.042

    Google Scholar 

  17. Myers, R., Montgomery, D., Anderson-Cook, C.: Response Surface Methodology, 3 edn. (2009)

    Google Scholar 

  18. Cornell, J.A.: A Primer on Experiments with Mixtures, 3rd edn. Wiley, New Jersey (2011)

    Google Scholar 

  19. Gomes, J.H.F., Paiva, A.P., Costa, S.C., Balestrassi, P.P., Paiva, E.J.: Weighted multivariate mean square error for processes optimization: a case study on flux-cored arc welding for stainless steel claddings. Eur. J. Oper. Res. 226(3), 522–535 (2013). https://doi.org/10.1016/j.ejor.2012.11.042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taynara Incerti de Paula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Paula, T.I., Gomes, G.F., de Freitas Gomes, J.H., de Paiva, A.P. (2020). A Mixture Design of Experiments Approach for Genetic Algorithm Tuning Applied to Multi-objective Optimization. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_60

Download citation

Publish with us

Policies and ethics