Skip to main content

Endoscopic Lesion Recognition and Advanced Imaging Modalities

  • Chapter
  • First Online:
Book cover Gastrointestinal Interventional Endoscopy

Abstract

Lesion recognition and characterization is one of the most important tasks during endoscopic evaluation of the gastrointestinal tract. This has been facilitated in the last few decades by the explosive growth of optical, cross-sectional, and molecular methods. Several advanced imaging modalities (AIMs) have been studied extensively to achieve the following goals: improve detection of neoplastic lesions, predict histology, and guide endoscopic therapies. In this chapter, we will review the basic principles of advanced imaging modalities and their applicability in Barrett’s esophagus (BE), gastric and duodenal cancer, colon polyps, and inflammatory bowel disease. Additional aims include providing guidance regarding optimal utilization of these modalities in clinical practice, as well as training and competency based on published guidelines and quality indicators in endoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirschowitz BI, Peters CW, Curtiss LE. Preliminary report on a long fiberscope for examination of stomach and duodenum. Med Bull (Ann Arbor). 1957;23:178–80.

    CAS  Google Scholar 

  2. Catalano MF, Van Dam J, Bedford R, et al. Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system. Gastrointest Endosc. 1993;39:23–8.

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian V, Ragunath K. Advanced endoscopic imaging: a review of commercially available technologies. Clin Gastroenterol Hepatol. 2014;12:368–76.e1.

    Article  PubMed  Google Scholar 

  4. Waye JD, Aisenberg J, Rubin PH. Practical colonoscopy. 1st ed. Wiley-Blackwell: Oxford, UK; 2013.

    Book  Google Scholar 

  5. Udagawa T, Amano M, Okada F. Development of magnifying video endoscopies with high resolution. Dig Endosc. 2001;13:163–9.

    Article  Google Scholar 

  6. Committee AT, Kwon RS, Adler DG, et al. High-resolution and high-magnification endoscopes. Gastrointest Endosc. 2009;69:399–407.

    Article  Google Scholar 

  7. Committee AT. High-definition and high-magnification endoscopes. Gastrointest Endosc. 2014;80:919–27.

    Article  Google Scholar 

  8. Kaltenbach T, Shergill AK, Wallace MB. How to obtain and use chromoendoscopy dyes for surveillance colonoscopy in inflammatory bowel disease: a technical guide. Gastrointest Endosc. 2017;86:949–51.

    Article  PubMed  Google Scholar 

  9. Shimizu Y, Takahashi M, Mizushima T, et al. Chromoendoscopy with iodine staining, as well as narrow-band imaging, is still useful and reliable for screening of early esophageal squamous cell carcinoma. Am J Gastroenterol. 2015;110:193–4.

    Article  PubMed  Google Scholar 

  10. Lambert R, Rey JF, Sankaranarayanan R. Magnification and chromoscopy with the acetic acid test. Endoscopy. 2003;35:437–45.

    Article  CAS  PubMed  Google Scholar 

  11. Mizuno H, Gono K, Takehana S, et al. Narrow band imaging technique. Tech Gastrointest Endosc. 2003;5:78–81.

    Article  Google Scholar 

  12. Pohl J, May A, Rabenstein T, et al. Computed virtual chromoendoscopy: a new tool for enhancing tissue surface structures. Endoscopy. 2007;39:80–3.

    Article  CAS  PubMed  Google Scholar 

  13. Kodashima S. Novel image-enhanced endoscopy with i-scan technology. World J Gastroenterol. 2010;16:1043.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Osawa H, Yamamoto H. Present and future status of flexible spectral imaging color enhancement and blue laser imaging technology. Dig Endosc. 2014;26(Suppl 1):105–15.

    Article  PubMed  Google Scholar 

  15. Committee AT, Song LM, Banerjee S, et al. Autofluorescence imaging. Gastrointest Endosc. 2011;73:647–50.

    Article  Google Scholar 

  16. Wang TD. Confocal microscopy from the bench to the bedside. Gastrointest Endosc. 2005;62:696–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Committee AT. Confocal laser endomicroscopy. Gastrointest Endosc. 2014;80:928–38.

    Article  Google Scholar 

  18. Kiesslich R, Goetz M, Hoffman A, et al. New imaging techniques and opportunities in endoscopy. Nat Rev Gastroenterol Hepatol. 2011;8:547–53.

    Article  PubMed  Google Scholar 

  19. Committee AT. Enhanced imaging in the GI tract: spectroscopy and optical coherence tomography. Gastrointest Endosc. 2013;78:568–73.

    Article  Google Scholar 

  20. Goetz M, Wang TD. Molecular imaging in gastrointestinal endoscopy. Gastroenterology. 2010;138:828–33.e1.

    Article  CAS  PubMed  Google Scholar 

  21. Joshi BP, Pant A, Duan X, et al. Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology. 2016;150:1084–6.

    Article  PubMed  Google Scholar 

  22. Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.

    Article  PubMed  Google Scholar 

  23. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

    Article  PubMed  CAS  Google Scholar 

  24. Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  PubMed  Google Scholar 

  25. Shaheen NJ, Falk GW, Iyer PG, et al. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50; quiz 51.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron AJ, Carpenter HA. Barrett’s esophagus, high-grade dysplasia, and early adenocarcinoma: a pathological study. Am J Gastroenterol. 1997;92:586–91.

    CAS  PubMed  Google Scholar 

  27. Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63:7–42.

    Article  PubMed  Google Scholar 

  28. Weusten B, Bisschops R, Coron E, et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy. 2017;49:191–8.

    Article  PubMed  Google Scholar 

  29. Verbeek RE, Leenders M, Ten Kate FJ, et al. Surveillance of Barrett's esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am J Gastroenterol. 2014;109:1215–22.

    Article  PubMed  Google Scholar 

  30. Spechler SJ, Sharma P, Souza RF, et al. American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology. 2011;140:e18–52; quiz e13

    Article  PubMed  Google Scholar 

  31. Abrams JA, Kapel RC, Lindberg GM, et al. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7:736–42.. quiz 710

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wani S, Mathur SC, Curvers WL, et al. Greater interobserver agreement by endoscopic mucosal resection than biopsy samples in Barrett’s dysplasia. Clin Gastroenterol Hepatol. 2010;8:783–8.

    Article  PubMed  Google Scholar 

  33. Bennett C, Vakil N, Bergman J, et al. Consensus statements for management of Barrett’s dysplasia and early-stage esophageal adenocarcinoma, based on a Delphi process. Gastroenterology. 2012;143:336–46.

    Article  PubMed  Google Scholar 

  34. Kara MA, Peters FP, Rosmolen WD, et al. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett’s esophagus: a prospective randomized crossover study. Endoscopy. 2005;37:929–36.

    Article  CAS  PubMed  Google Scholar 

  35. Wani S, Muthusamy VR, Shaheen NJ, et al. Development of quality indicators for endoscopic eradication therapies in Barrett’s esophagus: the TREAT-BE (Treatment With Resection and Endoscopic Ablation Techniques for Barrett’s Esophagus) consortium. Am J Gastroenterol. 2017;112:1032–48.

    Article  PubMed  Google Scholar 

  36. Boerwinkel DF, Swager A, Curvers WL, et al. The clinical consequences of advanced imaging techniques in Barrett’s esophagus. Gastroenterology. 2014;146:622–629.e4.

    Article  PubMed  Google Scholar 

  37. Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392–9.

    Article  PubMed  Google Scholar 

  38. Reid BJ, Blount PL, Feng Z, et al. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95:3089–96.

    Article  CAS  PubMed  Google Scholar 

  39. Moss A, Bourke MJ, Hourigan LF, et al. Endoscopic resection for Barrett’s high-grade dysplasia and early esophageal adenocarcinoma: an essential staging procedure with long-term therapeutic benefit. Am J Gastroenterol. 2010;105:1276–83.

    Article  PubMed  Google Scholar 

  40. Wani S, Abrams J, Edmundowicz SA, et al. Endoscopic mucosal resection results in change of histologic diagnosis in Barrett’s esophagus patients with visible and flat neoplasia: a multicenter cohort study. Dig Dis Sci. 2013;58:1703–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paris Workshop on Columnar Metaplasia in the Esophagus and the Esophagogastric Junction, Paris, France, December 11–12 2004. Endoscopy 2005;37:879–920.

    Google Scholar 

  42. Sharma P, Savides TJ, Canto MI, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on imaging in Barrett’s esophagus. Gastrointest Endosc. 2012;76:252–4.

    Article  PubMed  Google Scholar 

  43. Committee AT, Thosani N, Abu Dayyeh BK, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest Endosc. 2016;83:684–98.e7.

    Article  Google Scholar 

  44. Qumseya BJ, Wang H, Badie N, et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: a meta-analysis and systematic review. Clin Gastroenterol Hepatol. 2013;11:1562–70.e1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoffman A, Korczynski O, Tresch A, et al. Acetic acid compared with i-scan imaging for detecting Barrett’s esophagus: a randomized, comparative trial. Gastrointest Endosc. 2014;79:46–54.

    Article  PubMed  Google Scholar 

  46. Sharma P, Hawes RH, Bansal A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62:15–21.

    Article  PubMed  Google Scholar 

  47. Sharma P, Bansal A, Mathur S, et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc. 2006;64:167–75.

    Article  PubMed  Google Scholar 

  48. Kara MA, Ennahachi M, Fockens P, et al. Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest Endosc. 2006;64:155–66.

    Article  PubMed  Google Scholar 

  49. Singh R, Anagnostopoulos GK, Yao K, et al. Narrow-band imaging with magnification in Barrett’s esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy. 2008;40:457–63.

    Article  CAS  PubMed  Google Scholar 

  50. Sharma P, Bergman JJ, Goda K, et al. Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow-band imaging. Gastroenterology. 2016;150:591–8.

    Article  PubMed  Google Scholar 

  51. Ngamruengphong S, Sharma VK, Das A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc. 2009;69:1021–8.

    Article  PubMed  Google Scholar 

  52. Olliver JR, Wild CP, Sahay P, et al. Chromoendoscopy with methylene blue and associated DNA damage in Barrett’s oesophagus. Lancet. 2003;362:373–4.

    Article  CAS  PubMed  Google Scholar 

  53. Wani S, Gaddam S. Editorial: best practices in surveillance of Barrett’s esophagus. Am J Gastroenterol. 2017;112:1056–60.

    Article  PubMed  Google Scholar 

  54. Muthusamy VR, Kim S, Wallace MB. Advanced imaging in Barrett’s esophagus. Gastroenterol Clin North Am. 2015;44:439–58.

    Article  PubMed  Google Scholar 

  55. Qumseya BJ, Gendy S, Qumsiyeh Y, et al. Marginal increase in dysplasia detection and very high false positive rate for volumetric laser endomicroscopy in Barrett’s esophagus: systemic review and meta-analysis. Gastrointest Endosc. 2017;85:AB554.

    Article  Google Scholar 

  56. Tsai TH, Zhou C, Tao YK, et al. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett’s esophagus radiofrequency ablation treatment response (with videos). Gastrointest Endosc. 2012;76:1104–12.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Adler DC, Zhou C, Tsai TH, et al. Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy. 2009;41:773–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagata T, Ikeda M, Nakayama F. Changing state of gastric cancer in Japan. Histologic perspective of the past 76 years. Am J Surg. 1983;145:226–33.

    Article  CAS  PubMed  Google Scholar 

  59. Hamashima C, Ogoshi K, Okamoto M, et al. A community-based, case-control study evaluating mortality reduction from gastric cancer by endoscopic screening in Japan. PLoS One. 2013;8:e79088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jun JK, Choi KS, Lee HY, et al. Effectiveness of the Korean National Cancer Screening Program in Reducing Gastric Cancer Mortality. Gastroenterology. 2017;152:1319–1328.e7.

    Article  PubMed  Google Scholar 

  61. Lin JT. Screening of gastric cancer: who, when, and how. Clin Gastroenterol Hepatol. 2014;12:135–8.

    Article  CAS  PubMed  Google Scholar 

  62. Noguchi Y, Yoshikawa T, Tsuburaya A, et al. Is gastric carcinoma different between Japan and the United States? Cancer. 2000;89:2237–46.

    Article  CAS  PubMed  Google Scholar 

  63. Pyo JH, Lee H, Min BH, et al. Long-term outcome of endoscopic resection vs. surgery for early gastric cancer: a non-inferiority-matched cohort study. Am J Gastroenterol. 2016;111:240–9.

    Article  PubMed  Google Scholar 

  64. Tashiro A, Sano M, Kinameri K, et al. Comparing mass screening techniques for gastric cancer in Japan. World J Gastroenterol. 2006;12:4873–4.

    PubMed  PubMed Central  Google Scholar 

  65. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40.

    CAS  PubMed  Google Scholar 

  66. de Vries AC, van Grieken NC, Looman CW, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology. 2008;134:945–52.

    Article  PubMed  Google Scholar 

  67. Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44:74–94.

    Article  CAS  PubMed  Google Scholar 

  68. Kim GH, Liang PS, Bang SJ, et al. Screening and surveillance for gastric cancer in the United States: is it needed? Gastrointest Endosc. 2016;84:18–28.

    Article  PubMed  Google Scholar 

  69. Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–81.

    Article  CAS  PubMed  Google Scholar 

  70. Guarner J, Herrera-Goepfert R, Mohar A, et al. Diagnostic yield of gastric biopsy specimens when screening for preneoplastic lesions. Hum Pathol. 2003;34:28–31.

    Article  PubMed  Google Scholar 

  71. Hu YY, Lian QW, Lin ZH, et al. Diagnostic performance of magnifying narrow-band imaging for early gastric cancer: a meta-analysis. World J Gastroenterol. 2015;21:7884–94.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fujiwara S, Yao K, Nagahama T, et al. Can we accurately diagnose minute gastric cancers (</=5 mm)? Chromoendoscopy (CE) vs magnifying endoscopy with narrow band imaging (M-NBI). Gastric Cancer. 2015;18:590–6.

    Article  PubMed  Google Scholar 

  73. Nagahama T, Yao K, Maki S, et al. Usefulness of magnifying endoscopy with narrow-band imaging for determining the horizontal extent of early gastric cancer when there is an unclear margin by chromoendoscopy (with video). Gastrointest Endosc. 2011;74:1259–67.

    Article  PubMed  Google Scholar 

  74. Li WB, Zuo XL, Li CQ, et al. Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions. Gut. 2011;60:299–306.

    Article  PubMed  Google Scholar 

  75. Spigelman AD, Talbot IC, Penna C, et al. Evidence for adenoma-carcinoma sequence in the duodenum of patients with familial adenomatous polyposis. The Leeds Castle Polyposis Group (Upper Gastrointestinal Committee). J Clin Pathol. 1994;47:709–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brosens LA, Keller JJ, Offerhaus GJ, et al. Prevention and management of duodenal polyps in familial adenomatous polyposis. Gut. 2005;54:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62; quiz 263

    Article  PubMed  PubMed Central  Google Scholar 

  78. Spigelman AD, Williams CB, Talbot IC, et al. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet. 1989;2:783–5.

    Article  CAS  PubMed  Google Scholar 

  79. Groves CJ, Saunders BP, Spigelman AD, et al. Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study. Gut. 2002;50:636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sauvanet A, Chapuis O, Hammel P, et al. Are endoscopic procedures able to predict the benignity of ampullary tumors? Am J Surg. 1997;174:355–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lopez-Ceron M, van den Broek FJ, Mathus-Vliegen EM, et al. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis. Gastrointest Endosc. 2013;77:542–50.

    Article  PubMed  Google Scholar 

  82. Uchiyama Y, Imazu H, Kakutani H, et al. New approach to diagnosing ampullary tumors by magnifying endoscopy combined with a narrow-band imaging system. J Gastroenterol. 2006;41:483–90.

    Article  PubMed  Google Scholar 

  83. Kiesslich R, Mergener K, Naumann C, et al. Value of chromoendoscopy and magnification endoscopy in the evaluation of duodenal abnormalities: a prospective, randomized comparison. Endoscopy. 2003;35:559–63.

    Article  CAS  PubMed  Google Scholar 

  84. Shahid MW, Buchner A, Gomez V, et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy and narrow band imaging in detection of dysplasia in duodenal polyps. J Clin Gastroenterol. 2012;46:382–9.

    Article  PubMed  Google Scholar 

  85. Society AC. Cancer facts & figures. Am Cancer Soc. 2012;

    Google Scholar 

  86. Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–64.

    Article  CAS  PubMed  Google Scholar 

  87. Rex DK, Boland CR, Dominitz JA, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;153:307–23.

    Article  PubMed  Google Scholar 

  88. Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81.

    Article  CAS  PubMed  Google Scholar 

  89. Holme O, Loberg M, Kalager M, et al. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial. JAMA. 2014;312:606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schoen RE, Pinsky PF, Weissfeld JL, et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med. 2012;366:2345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kahi CJ, Anderson JC, Waxman I, et al. High-definition chromocolonoscopy vs. high-definition white light colonoscopy for average-risk colorectal cancer screening. Am J Gastroenterol. 2010;105:1301–7.

    Article  PubMed  Google Scholar 

  92. Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc. 2012;75:604–11.

    Article  PubMed  Google Scholar 

  93. Butterly LF, Chase MP, Pohl H, et al. Prevalence of clinically important histology in small adenomas. Clin Gastroenterol Hepatol. 2006;4:343–8.

    Article  PubMed  Google Scholar 

  94. Lieberman D, Moravec M, Holub J, et al. Polyp size and advanced histology in patients undergoing colonoscopy screening: implications for CT colonography. Gastroenterology. 2008;135:1100–5.

    Article  PubMed  Google Scholar 

  95. Patel SG, Schoenfeld P, Kim HM, et al. Real-time characterization of diminutive colorectal polyp histology using narrow-band imaging: implications for the resect and discard strategy. Gastroenterology. 2016;150:406–18.

    Article  PubMed  Google Scholar 

  96. Rex DK, Kahi C, O'Brien M, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.

    Article  PubMed  Google Scholar 

  97. Committee AT, Abu Dayyeh BK, Thosani N, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81:502.e1–16.

    Article  Google Scholar 

  98. McGill SK, Evangelou E, Ioannidis JP, et al. Narrow band imaging to differentiate neoplastic and non-neoplastic colorectal polyps in real time: a meta-analysis of diagnostic operating characteristics. Gut. 2013;62:1704–13.

    Article  PubMed  Google Scholar 

  99. Rees CJ, Rajasekhar PT, Wilson A, et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: the Detect Inspect Characterise Resect and Discard 2 (DISCARD 2) study. Gut. 2017;66:887–95.

    Article  PubMed  Google Scholar 

  100. Wanders LK, East JE, Uitentuis SE, et al. Diagnostic performance of narrowed spectrum endoscopy, autofluorescence imaging, and confocal laser endomicroscopy for optical diagnosis of colonic polyps: a meta-analysis. Lancet Oncol. 2013;14:1337–47.

    Article  PubMed  Google Scholar 

  101. Kudo S, Hirota S, Nakajima T, et al. Colorectal tumours and pit pattern. J Clin Pathol. 1994;47:880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tanaka S, Sano Y. Aim to unify the narrow band imaging (NBI) magnifying classification for colorectal tumors: current status in Japan from a summary of the consensus symposium in the 79th Annual Meeting of the Japan Gastroenterological Endoscopy Society. Dig Endosc. 2011;23(Suppl 1):131–9.

    Article  PubMed  Google Scholar 

  103. IJspeert JE, Bastiaansen BA, van Leerdam ME, et al. Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut. 2016;65:963–70.

    Article  PubMed  Google Scholar 

  104. Rex DK, Hassan C, Bourke MJ. The colonoscopist’s guide to the vocabulary of colorectal neoplasia: histology, morphology, and management. Gastrointest Endosc. 2017;86:253–63.

    Article  PubMed  Google Scholar 

  105. Bosch SL, Teerenstra S, de Wilt JH, et al. Predicting lymph node metastasis in pT1 colorectal cancer: a systematic review of risk factors providing rationale for therapy decisions. Endoscopy. 2013;45:827–34.

    Article  PubMed  Google Scholar 

  106. Moss A, Bourke MJ, Williams SJ, et al. Endoscopic mucosal resection outcomes and prediction of submucosal cancer from advanced colonic mucosal neoplasia. Gastroenterology. 2011;140:1909–18.

    Article  PubMed  Google Scholar 

  107. Hayashi N, Tanaka S, Hewett DG, et al. Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (NICE) classification. Gastrointest Endosc. 2013;78:625–32.

    Article  PubMed  Google Scholar 

  108. Burgess NG, Hourigan LF, Zanati SA, et al. Risk stratification for covert invasive cancer among patients referred for colonic endoscopic mucosal resection: a large multicenter cohort. Gastroenterology. 2017;153:732–742.e1.

    Article  PubMed  Google Scholar 

  109. Uno Y, Munakata A. The non-lifting sign of invasive colon cancer. Gastrointest Endosc. 1994;40:485–9.

    Article  CAS  PubMed  Google Scholar 

  110. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10:639–45.

    Article  PubMed  Google Scholar 

  111. Foersch S, Neurath MF. Colitis-associated neoplasia: molecular basis and clinical translation. Cell Mol Life Sci. 2014;71:3523–35.

    Article  CAS  PubMed  Google Scholar 

  112. Farraye FA, Odze RD, Eaden J, et al. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138:738–45.

    Article  PubMed  Google Scholar 

  113. Bye WA, Nguyen TM, Parker CE, et al. Strategies for detecting colon cancer in patients with inflammatory bowel disease. Cochrane Database Syst Rev. 2017;9:CD000279.

    PubMed  Google Scholar 

  114. Ananthakrishnan AN, Cagan A, Cai T, et al. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2015;13:322–329.e1.

    Article  PubMed  Google Scholar 

  115. Choi CH, Rutter MD, Askari A, et al. Forty-year analysis of colonoscopic surveillance program for neoplasia in ulcerative colitis: an updated overview. Am J Gastroenterol. 2015;110:1022–34.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Laine L, Kaltenbach T, Barkun A, et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastroenterology. 2015;148:639–651.e28.

    Article  PubMed  Google Scholar 

  117. East JE. Colonoscopic cancer surveillance in inflammatory bowel disease: what’s new beyond random biopsy? Clin Endosc. 2012;45:274–7.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gasia MF, Ghosh S, Panaccione R, et al. Targeted biopsies identify larger proportions of patients with colonic neoplasia undergoing high-definition colonoscopy, dye chromoendoscopy, or electronic virtual chromoendoscopy. Clin Gastroenterol Hepatol. 2016;14:704–12.e4.

    Article  PubMed  Google Scholar 

  119. Iannone A, Ruospo M, Wong G, et al. Chromoendoscopy for surveillance in ulcerative colitis and Crohn’s disease: a systematic review of randomized trials. Clin Gastroenterol Hepatol. 2017;15:1684–1697.e11.

    Article  PubMed  Google Scholar 

  120. Iacucci M, Kaplan GG, Panaccione R, et al. A randomized trial comparing high definition colonoscopy alone with high definition dye spraying and electronic virtual chromoendoscopy for detection of colonic neoplastic lesions during IBD surveillance colonoscopy. Am J Gastroenterol. 2017;113:225–34.

    Google Scholar 

  121. Mooiweer E, van der Meulen-de Jong AE, Ponsioen CY, et al. Chromoendoscopy for surveillance in inflammatory bowel disease does not increase neoplasia detection compared with conventional colonoscopy with random biopsies: results from a large retrospective study. Am J Gastroenterol. 2015;110:1014–21.

    Article  CAS  PubMed  Google Scholar 

  122. Rasmussen DN, Karstensen JG, Riis LB, et al. Confocal laser Endomicroscopy in inflammatory bowel disease – a systematic review. J Crohns Colitis. 2015;9:1152–9.

    Article  PubMed  Google Scholar 

  123. Leong RW, Ooi M, Corte C, et al. Full-spectrum endoscopy improves surveillance for dysplasia in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:1337–1344.e3.

    Article  PubMed  Google Scholar 

  124. Kisiel JB, Konijeti GG, Piscitello AJ, et al. Stool DNA analysis is cost-effective for colorectal cancer surveillance in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2016;14:1778–1787.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gupta N, Brill JV, Canto M, et al. AGA white paper: training and implementation of endoscopic image enhancement technologies. Clin Gastroenterol Hepatol. 2017;15:820–6.

    Article  PubMed  Google Scholar 

  126. Patel SG, Rastogi A, Austin G, et al. Gastroenterology trainees can easily learn histologic characterization of diminutive colorectal polyps with narrow band imaging. Clin Gastroenterol Hepatol. 2013;11:997–1003.e1.

    Article  PubMed  Google Scholar 

  127. Rastogi A, Rao DS, Gupta N, et al. Impact of a computer-based teaching module on characterization of diminutive colon polyps by using narrow-band imaging by non-experts in academic and community practice: a video-based study. Gastrointest Endosc. 2014;79:390–8.

    Article  PubMed  Google Scholar 

  128. Daly C, Vennalaganti P, Soudagar S, et al. Randomized controlled trial of self-directed versus in-classroom teaching of narrow-band imaging for diagnosis of Barrett’s esophagus-associated neoplasia. Gastrointest Endosc. 2016;83:101–6.

    Article  PubMed  Google Scholar 

  129. Rzouq F, Vennalaganti P, Pakseresht K, et al. In-class didactic versus self-directed teaching of the probe-based confocal laser endomicroscopy (pCLE) criteria for Barrett’s esophagus. Endoscopy. 2016;48:123–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Machicado, J.D., Kolb, J.M., Wani, S.B. (2020). Endoscopic Lesion Recognition and Advanced Imaging Modalities. In: Wagh, M., Wani, S. (eds) Gastrointestinal Interventional Endoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-21695-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21695-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21694-8

  • Online ISBN: 978-3-030-21695-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics