Skip to main content

Stimulated Emission Depletion Microscopy and Related Techniques

  • Chapter
  • First Online:
Book cover Superresolution Optical Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 227))

  • 1781 Accesses

Abstract

Stimulated Emission Depletion (STED) microscopy is a far-field, scanning fluorescence microscope technique that yields superresolution images of the specimen (Hell and Wichmann in Opt Lett 19:780–782, 1994). The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell, and William E. Moerner β€œfor the development of super-resolved fluorescence microscopy.” Hell is recognized for his seminal contribution to STED microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, L., Barnett, S. M., and Padgett, M. J. (2003). Optical Angular Momentum. Bristol: Institute of Physics.

    Google ScholarΒ 

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., and Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Physical Review A, 45, 8185–8189.

    Google ScholarΒ 

  • Andrews, D. L. (2008). Structured Light and Its Applications, 1st Edition. An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. San Diego: Academic Press.

    Google ScholarΒ 

  • Andrews, D. L. (2015). Fundamentals of Photonics and Physics. Volume I. Hoboken: John Wiley & Sons.

    Google ScholarΒ 

  • Andrews, D. L., and Babiker, M. (2013). The Angular Momentum of Light. Cambridge: Cambridge University Press.

    Google ScholarΒ 

  • Baer, S. C. (1994). Method and Apparatus for improving resolution in scanned optical system. Filed: July 15, 1994, Date of Patent: February 2, 1999. U. S. Patent number: 5,866,911.

    Google ScholarΒ 

  • Balasubramanian, G., Lazariev, A., Arumugam, S. R., and Duan, D. W. (2014). Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Current Opinion in Chemical Biology, 20, 69–77.

    Google ScholarΒ 

  • Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M., and Woerdman, J. P. (1994). Helical-wavefront laser beams produced with a spiral phase plate. Optics Communication, 112, 321–327.

    Google ScholarΒ 

  • Berry, M., Nye, J., and Wright, F. (1979). The elliptic umbilic diffraction catastrophe. Philosophical Transactions of the Royal Society of London, 291, 453–484.

    Google ScholarΒ 

  • Berry, M. V. (2004). Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A, 6, 259–268.

    Google ScholarΒ 

  • Bertolotti, M. (1999). The History of the Laser. Bristol: Institute of Physics Publishing.

    Google ScholarΒ 

  • Born, M., and Wolf, E. (1999). Principles of Optics, 7th expanded edition. Cambridge: Cambridge University Press.

    Google ScholarΒ 

  • Boyd, R. W. (2008). Nonlinear Optics, Third Edition. San Diego: Academic Press.

    Google ScholarΒ 

  • Braat, J., and TΣ§rΣ§k, P. (2019). Imaging Optics. Cambridge: Cambridge University Press.

    Google ScholarΒ 

  • Bretschneider, S., Eggeling, C., and Hell, S. W. (2007). Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters, 98, 218103-1–21803-4.

    Google ScholarΒ 

  • Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, J., Eggeling, C., and Hell, S. W. (2013). Nanoscopy with more than 100,000 β€˜doughnuts’. Nature Methods, 10, 737–740.

    Google ScholarΒ 

  • Clausen, M. P., Galiani, S., Bernardino de la Serna, J., Fritzsche, M., Chojnacki, J., Gehmlich, K., Christoffer Lagerholm, B., and Eggeling, C. (2013). Pathways to optical STED microscopy. NanoBioImaging, 1–12. https://doi.org/10.2478/nbi-2013-0001.

  • Coullet, P., Gil, G., and Rocca, F. (1989). Optical vortices. Optics Communication, 73, 403–408.

    Google ScholarΒ 

  • D’Alessandro, G., and Oppo, G-L., (1992). Gauss-Laguerre modes: A sensible basis for laser dynamics. Optics Communication, 88, 130–136.

    Google ScholarΒ 

  • Dennis, M. R., O’Holleran, K., and Padgett, M. J. (2009). Singular Optics: Optical Vortices and Polarization Singularities. In: Progress in Optics, Ed. E. Wolf, 53, 293–363.

    Google ScholarΒ 

  • Dirac, P. A. M. (1927). The quantum theory of emission and absorption of radiation. Proceedings of the Royal Society (London). Series A, 114, 243–265.

    Google ScholarΒ 

  • Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., SchΓΆnle, A., Jahn, R., Jakobs, S., Eggeling, C., and Hell, S. W. (2007). Two-color far-field fluorescence nanoscopy. Biophysical Journal, 92, L67–L69.

    Google ScholarΒ 

  • Dyba, M., and Hell, S. W. (2003). Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Applied Optics, 42, 5123–5129.

    Google ScholarΒ 

  • Dyba, M., Jakobs, S., and Hell, S. W. (2003). Immunofluorescent stimulated emission depletion microscopy. Nature Biotechnology, 21, 1303–1304.

    Google ScholarΒ 

  • Eggeling, C., Willig, K. I., Sahl, S. J., and Hell, S. W. (2015). Lens-based fluorescence nanoscopy. Quarterly Reviews of Biophysics, 48, 178–243.

    Google ScholarΒ 

  • Einstein, A. (1916a). Strahlungs-Emission und -Absorption nach der Quantentheorie. [Emission and absorption of radiation in quantum theory] Deutsche Physikalische Gesellschaft, Verhandlungen, 18, 318–323.

    Google ScholarΒ 

  • Einstein, A. (1916b). Zur Quantentheorie der Strahlung. [On the quantum theory of radiation]. Physikalische Gesellschaft ZΓΌrich, Mitteilungen, 18, 47–62.

    Google ScholarΒ 

  • Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. (2007). High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105.

    Google ScholarΒ 

  • FΣ§lling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C., and Hell, S. W. (2008). Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods, 5, 943–945.

    Google ScholarΒ 

  • FΣ§rster, T. (1946). Energiewanderung und Fluoreszenz. Naturwissenschaften, 33: 166–175.

    Google ScholarΒ 

  • FΣ§rster, T. (1951). Fluoreszenz Organischer Verbindungen. GΣ§ttingen: Vandenhoeck & Ruprecht.

    Google ScholarΒ 

  • Ganic, D., Gan, X., and Gu, M. (2003). Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Optics Express, 11, 2747–2752.

    Google ScholarΒ 

  • Goodman, J. W. (2017). Introduction to Fourier Optics. Fourth Edition. New York: W. H. Freeman and Company. Chapter 8. Point-Spread Function and Transfer Function Engineering, pp. 231–267.

    Google ScholarΒ 

  • Gortych, J. E. (2014). Consider a Spherical Patent, IP and Patenting in Technology Business. Boca Raton: CRC Press.

    Google ScholarΒ 

  • Gu, M. (2000). Advanced Optical Imaging Theory. Berlin: Springer, pp. 31–35.

    Google ScholarΒ 

  • Han, K. Y., Kim, S. K., Eggeling, C., and Hell, S. W. (2010). Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Letters, 10, 3199–3203.

    Google ScholarΒ 

  • Harke, B. (2008). 3D STED microscopy with pulsed and continuous wave lasers. Ph.D. thesis, George-August-University, GΣ§ttingen.

    Google ScholarΒ 

  • Harke, B., Keller, J., Ullal, C. K., Westphal, V., SchΓΆnle, A., and Hell, S. W. (2008). Resolution scaling in STED microscopy. Optics Express, 16, 4154–4162.

    Google ScholarΒ 

  • Hell, S. W. (1994). Improvement of lateral resolution in far-field light microscopy using two-photo excitation with offset beams. Optics Communications, 106, 19–24.

    Google ScholarΒ 

  • Hell, S. W. (2003). Towards fluorescence nanoscopy. Nature Biotechnology, 21, 1347–1355.

    Google ScholarΒ 

  • Hell, S. W. (2004). Strategy for far-field optical imaging and writing without diffraction limit. Physics Letters A, 326, 140–145.

    Google ScholarΒ 

  • Hell, S. W. (2009). Microscopy and its focal switch. Nature Methods, 6, 24–32.

    Google ScholarΒ 

  • Hell, S. W., Jakobs, S., and Kastrup, L. (2003). Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A, 77, 859–860.

    Google ScholarΒ 

  • Hell, S. W., and Kroug, M. (1995). Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Applied Physics B, 60, 495–497.

    Google ScholarΒ 

  • Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780–782.

    Google ScholarΒ 

  • HernΓ‘ndez, I. C., Buttafava, M., Boso, G., Diaspro, A., Tosi, A., and Vicidomini, G. (2015). Gated STED microscopy with time-gated single-photon avalanche diode. Biomedical Optics Express, 6, 2258–2267.

    Google ScholarΒ 

  • Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S.W. (2005). Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America, 102, 17565–17569.

    Google ScholarΒ 

  • Jones, P. H., MaragΓ², O. M., and Volpe, G. (2016). Optical Tweezers: Principles and Applications 1st Edition. Cambridge: Cambridge University Press.

    Google ScholarΒ 

  • Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14–19.

    Google ScholarΒ 

  • Kasha, M. (1960). Paths of molecular excitation. Radiation Research, 2, 243–275.

    Google ScholarΒ 

  • Klar, T. A., Engel, E., and Hell, S. W. (2001). Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Physical Review E, 64, 06613–06622.

    Google ScholarΒ 

  • Klar, T. A., and Hell, S. W. (1999). Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters, 24, 954–956.

    Google ScholarΒ 

  • Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell. S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206–8210.

    Google ScholarΒ 

  • Leutenegger, M., Eggeling, C., and Hell, S. W. (2010) Analytical description of STED microscopy performance. Optics Express, 18, 26417–26429.

    Google ScholarΒ 

  • Lewis, G. N., and Kasha, M. (1944). Phosphorescence and the Triplet State. Journal of the American Chemical Society, 66, 2100–2116.

    Google ScholarΒ 

  • Loudon, R. (2000). The Quantum Theory of Light, Third Edition. Oxford: Oxford University Press.

    Google ScholarΒ 

  • Maiman, T. H. (2018). The Laser Inventor Memoirs of Theodore H. Maiman. New York: Springer Nature.

    Google ScholarΒ 

  • Masajada, J., and Dubik, B. (2001). Optical vortex generation by three plane wave interference. Optics Communications, 198, 21–27.

    Google ScholarΒ 

  • Masters, B. R. (2001). Selected Papers on Optical Low-Coherence Reflectometry & Tomography, volume MS 165. SPIE Milestone Series. Bellingham: SPIE Optical Engineering Press.

    Google ScholarΒ 

  • Masters, B. R. (2003). Selected Papers on Multiphoton Excitation Microscopy, SPIE Milestone Series, volume MS 175. Bellingham: SPIE Optical Engineering Press.

    Google ScholarΒ 

  • Masters, B. R. (2006). Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging. Bellingham: SPIE, Optical Engineering Press.

    Google ScholarΒ 

  • Masters, B. R. (2009). C. V. Raman and the Raman Effect. Optics and Photonics News, March 2009, pp. 41–45.

    Google ScholarΒ 

  • Masters, B. R. (1996). Selected Papers on Confocal Microscopy. SPIE Milestone Series, volume MS 131. Bellingham: SPIE Optical Engineering Press.

    Google ScholarΒ 

  • Masters, B. R. (2012). Albert Einstein and the nature of light. Optics and Photonics News, 23, 42–47.

    Google ScholarΒ 

  • Masters, B. R. (2014). Paths to FΓΆrster’s resonance energy transfer (FRET) theory. The European Physical Journal H, 39, 87–139.

    Google ScholarΒ 

  • Masters, B. R. (2015). What is light? In English and translated into 15 languages. International Commission for Optics News Letter. e-ico.org Accessed August 19, 2017.

  • Masters, B. R., and So, P. T. C. (2008). Classical and Quantum Theory of One-Photon and Multiphoton Fluorescence Spectroscopy. In: Handbook of Biomedical Nonlinear Optical Microscopy. Eds. Masters, B. R. and So. P. T. C., chapter 5, pp. 91–152. New York: Oxford University Press.

    Google ScholarΒ 

  • Menon, R., Rogge, P., and Tsai, H.-Y. (2009). Design of diffractive lenses that generate optical nulls without phase singularities. Journal of the Optical Society of America A. Optics and Image Science, 26, 297–304.

    Google ScholarΒ 

  • Moneron, G., Medda, R., Hein, B., Giske, A., Westphal, V., and Hell, S. W. (2010). Fast STED microscopy with continuous wave fiber lasers. Optics Express, 18, 1302–1309.

    Google ScholarΒ 

  • Nye, J. F., and Berry, M. V. (1974). Dislocations in wave trains. Proceedings of the Royal Society of London A, 336, 165–190.

    Google ScholarΒ 

  • Oemrawsingh, S. S. R., van Houwelingen, J. A. W., Eliel, E. R., Woerdman, J. P., Verstegen, E. J. K., Kloosterboer, J. G., and β€˜t Hooft, G. W., (2004). Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 43, 688–694.

    Google ScholarΒ 

  • O’Holleran, K., Padgett, M. J., and Dennis, M. R. (2006). Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Optics Express, 14, 3039–3044.

    Google ScholarΒ 

  • Padgett, M. J., and Allen, L. (1955). The Poynting vector in Laguerre-Gaussian laser modes. Optics Communications, 121, 36–40.

    Google ScholarΒ 

  • Reuss, M., Engelhardt, J., and Hell, S. W. (2010). Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Optics Express, 18, 1049–1058.

    Google ScholarΒ 

  • Rozas, D. (1999). Generation and Propagation of Optical Vortices. A Dissertation submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Physics.

    Google ScholarΒ 

  • SchΣ§nle, A. (2003). Point spread function engineering in fluorescence spectroscopy. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.

    Google ScholarΒ 

  • SchΓΆnle, A., Keller, J., Harke, B., and Hell, S. W. (2008). Diffraction Unlimited Far-Field Fluorescence Microscopy. In: Handbook of Biomedical Nonlinear Optical Microscopy, Eds. Barry R. Masters and Peter T. C. So. Oxford: Oxford University Press, Chapter 24.

    Google ScholarΒ 

  • Schoonover, R. W. (2009). Studies in Singular Optics and Coherence Theory. Doctoral Thesis, Technische Universiteit Delft, The Netherlands.

    Google ScholarΒ 

  • Schwentker, A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C., and Hell, S. W. (2007). Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique, 70, 269–280.

    Google ScholarΒ 

  • Sheppard, C. J. R., and Choudhury, A. (2004). Annular pupils, radial polarization, and superresolution. Applied Optics, 43, 4322–4327.

    Google ScholarΒ 

  • Silfvast, W. T. (2004). Laser Fundamentals, second Edition. Cambridge: Cambridge University Press.

    Google ScholarΒ 

  • Soskin, M. S., and Vasnetsov, M. V. (2001). Singular optics. in Progress in Optics, edited by E. Wolf, 42,Β 219–276. Amsterdam: Elsevier.

    Google ScholarΒ 

  • Sueda, K., Miyaji, G., Miyanaga, N., and Nakatsuka, M. (2004). Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Optics Express, 12, 3548–3553.

    Google ScholarΒ 

  • Tomonaga, S.-I. (1997). The Story of Spin. Chicago: The University of Chicago Press.

    Google ScholarΒ 

  • Turnbull, G. A., Robertson, D. A., Smith, G. M., Allen, L., and Padgett, M. J. (1996). Generation of free-space Laguerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phaseplate. Optics Communication, 127, 183–188.

    Google ScholarΒ 

  • Valeur, D., and Berberan-Santos, M. N. (2012). Molecular Fluorescence, Principles and Applications, Second Edition. Weinheim: Wiley-VCH.

    Google ScholarΒ 

  • Vaughan, J. M., and Willetts, D. (1979). Interference properties of a light-beam having a helicalwave surface. Optics Communication, 30, 263–267.

    Google ScholarΒ 

  • Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., and Hell, S. W. (2011). Sharper low-power STED nanoscopy by time gating. Nature Methods, 8, 571–573.

    Google ScholarΒ 

  • Vicidomini, G., SchΓΆnle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C., and Hell, S. W. (2013). STED nanoscopy with time-gated detection: Theoretical and experimental aspects. PLOS ONE, 8(1–12), e54421.

    Google ScholarΒ 

  • Westphal, V., Blanca, C.M., Dyba, M., Kastrup, L., and Hell, S. W. (2003). Laser-diode-stimulated emission depletion microscopy. Applied Physics Letters, 82, 3125–3127.

    Google ScholarΒ 

  • Westphal, V., and Hell, S. W. (2005). Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters, 94, 143903–143907.

    Google ScholarΒ 

  • Westphal, V., Kastrup, L., and Hell, S. W. (2003). Lateral resolution of 28Β nm (Ξ»/25) in far-field fluorescence microscopy. Applied Physics B Lasers and Optics, 77, 377–380.

    Google ScholarΒ 

  • Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., and Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320, 246–249.

    Google ScholarΒ 

  • Wildanger, D., BΓΌckers, J., Westphal, V., Hell, S. W., and Kastrup, L. (2009). A STED microscope aligned by design. Optics Express, 17, 16100–16110.

    Google ScholarΒ 

  • Wildanger, D., Medda, R., Kastrup, L., and Hell, S. W. (2009). A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy, 236, 35–43.

    Google ScholarΒ 

  • Wildanger, D., Rittweger, E., Kastrup, L., and Hell, S.W. (2008). STED microscopy with a supercontinuum laser source. Optics Express, 16, 9614–9621.

    Google ScholarΒ 

  • Willig, K. I., (2006). STED microscopy in the visible range. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.

    Google ScholarΒ 

  • Willig, K. I., Harke, B., Medda, R., and Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4, 915–918.

    Google ScholarΒ 

  • Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., and Hell S. W. (2006a). Nanoscale resolution in GFP-based microscopy. Nature Methods, 3, 721–723.

    Google ScholarΒ 

  • Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., and Hell, S. W. (2006b). STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935–939.

    Google ScholarΒ 

  • Wisniewski-Barker, E., and Padgett, M. J. (2015). Orbital angular momentum. In: Photonics: Scientific Foundations, Technology and Applications, Volume I, First Edition. Edited by David L. Andrews. pp. 321–340.. New York: John Wiley & Sons, Inc.

    Google ScholarΒ 

  • Wurm, C. A., Kolmakov, K., GΓΆttfert, F., Ta, H., Bossi, M., Schill, H., Berning, S., Jakobs, S., Donnert, G., Belov, V. N., and Hell, S. W. (2012). Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy, 1, 1–7.

    Google ScholarΒ 

  • Yamanaka, M., Kawano, S., Fujita, K., Smith, N. I., Kawata, S. (2008). Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 13, 050507.

    Google ScholarΒ 

  • Yamanaka, M., Tzeng, Y.-K., Kawano, S. Smith, N. I., Kawata, S., Chang, H-C., Fujita, K. (2011). SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomed. Opt. Express 2, 1946–1954

    Google ScholarΒ 

Further Reading

  • Allen, L., Courtial, J., and Padgett, M. J. (1999). Matrix formulation for the propagation of light beams with orbital and spin angular momenta. Physical Review E, 60, 7497–7503.

    Google ScholarΒ 

  • Allen, L., and Padgett, M. (2007). Equivalent geometric transformations for spin and orbital angular momentum of light. Journal of Modern Optics, 54, 487–491.

    Google ScholarΒ 

  • Allen, L., and Padgett, M. J. (2000). The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Optics Communication, 184, 67–71.

    Google ScholarΒ 

  • Andresen, M., Stiel, A. C., FΓΆlling, J., Wenzel, D., SchΓΆnle, A., Egner, A., Eggeling, C., Hell, S. W., and Jakobs, S. (2008). Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology, 26, 1035–1040.

    Google ScholarΒ 

  • Aquino, D., SchΓΆnle, A., Geisler, C., Middendorf, C. v., Wurm, C. A., Okamura, Y., Lang, T., Hell, S. W., and Egner, A. (2011). Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Methods, 8, 353–359.

    Google ScholarΒ 

  • Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O., and Woerdman, J. P. (1993). Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communication, 96, 123–132.

    Google ScholarΒ 

  • Berning, S., Willig, K. I., Steffens, H., Dibaj, P., and Hell, S. W. (2012). Nanoscopy in a living mouse brain. Science, 335, 551.

    Google ScholarΒ 

  • Bierwagen, J., Testa, I., FΓΆlling, J., Wenzel, D., Jakobs, S., Eggeling, C., and Hell, S. W. (2010). Far-field autofluorescence nanoscopy. Nano Letters, 10, 4249–4252.

    Google ScholarΒ 

  • Brown, T. G. (2011). Unconventional polarization states: Beam propagation, focusing, and imaging. Progress in Optics, 56, 81–129.

    Google ScholarΒ 

  • Chen, Z., Hua, L., and Pu, J. (2012). Tight focusing of light beams: Effect of polarization, phase, and coherence. Progress in Optics, 57, 219–260.

    Google ScholarΒ 

  • Cheng, W. (2013). Optical Vortex Beams: Generation, Propagation and Applications. Dissertation Submitted to the School of Engineering of the University of Dayton in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electro-Optics.

    Google ScholarΒ 

  • Cremer, C., and Masters, B. R. (2013). Resolution enhancement techniques in microscopy. European Physical Journal H, 38, 281–344.

    Google ScholarΒ 

  • Dyba, M., and Hell, S. W. (2002). Focal spots of size Ξ»/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Physical Review Letters, 88, 163901-1–163901-4.

    Google ScholarΒ 

  • Egner, A., Jakobs, S., and Hell, S. W. (2002). Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences of the United States of America, 99, 3370–3375.

    Google ScholarΒ 

  • GΓΆtte, J.B. (2006). Integral and fractional orbital angular momentum of light. Ph.D. Dissertation, Glasgow, Scotland: University of Strathclyde.

    Google ScholarΒ 

  • Hein, B., Willig, K. I., and Hell, S. W. (2008a). Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences of the United States of America, 105, 14271–14276.

    Google ScholarΒ 

  • Hein, B., Willig, K. I., Westphal, V., Jacobs, S., and Hell, S. W. (2008b). Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophysical Journal, 98, 158–163.

    Google ScholarΒ 

  • Heintzmann, R. (2003). Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron, 34, 283–291.

    Google ScholarΒ 

  • Heintzmann, R., Jovin, T., and Cremer, C. (2002). Saturated patterned excitation microscopyβ€”A concept for optical resolution improvement. Journal of the Optical Society of America A. Optics and Image Science, 19, 1599–1609.

    Google ScholarΒ 

  • Hell, S. W. (2014). Nanoscopy with focused light: Lecture slides. Stefan W. Hellβ€”Nobel Lecture. http://www.rki-i.com/cell_reg2003/hell-lecture-slides.pdf. Accessed April 20, 2019.

  • Hell, S. W. (1997). Increasing the Resolution of Far-Field Fluorescence Microscopy by Point-Spread-Function Engineering. In: Topics in Fluorescence Spectroscopy; 5: Nonlinear and Two-Photon-Induced Fluorescence, edited by J. Lakowicz. New York: Plenum Press, pp. 361–426.

    Google ScholarΒ 

  • Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.

    Google ScholarΒ 

  • Hell, S. W., Schrader, M., and van der Voort, H. T. M. (1997). Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range. Journal of Microscopy, 187, 1–7.

    Google ScholarΒ 

  • Hell, S. W., Schmidt, R., and Egner, A. (2009). Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics, 3, 381–387.

    Google ScholarΒ 

  • Kastrup, L. (2004). Fluorescence depletion by stimulated emission in single-molecule spectroscopy. Doctoral Dissertation, Ruperto-Carola University of Heidelberg, Germany.

    Google ScholarΒ 

  • Keller, J., SchΣ§nle, A., and Hell, S. W. (2007). Efficient fluorescence inhibition patterns for RESOLFT microscopy. Optics Express, 15, 3361–3371.

    Google ScholarΒ 

  • Kellner, R. R. (2007). STED microscopy with Q-switched microchip lasers. Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences.

    Google ScholarΒ 

  • Klar, T. A. (2001). Progress in stimulated emission depletion microscopy. Doctoral Dissertation. Ruprecht-Karls-UniversitΓ€t Heidelberg.

    Google ScholarΒ 

  • KuΕ›ba, J., Bogdanov, V., Gryczynski, I., and Lakowicz, J. R. (1994). Theory of light quenching: Effects on fluorescence polarization, intensity, and anisotropy decays. Biophysical Journal, 67, 2024–2040.

    Google ScholarΒ 

  • Lalkens, B., Testa, I., Willig, K. I., and Hell, S. W. (2011). MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM. Microscopy Research and Technique, 75, 1–6.

    Google ScholarΒ 

  • Lauterbach, M. A., Keller, J., Schonle, A., Kamin, D., Westphal, V., Rizzoli, S. O., and Hell, S. W. (2010). Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. Journal of Biophotonics, 3, 417–424.

    Google ScholarΒ 

  • Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W., and Eggeling, C. (2012). Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Optics Express, 20, 5243–5263.

    Google ScholarΒ 

  • Liu, Y, Ding, Y., Alonas, E., Zhao, W., Santangelo, P. J., Jin, D., Piper, J. A., Teng, J., Ren, Q., and Xi, P. (2012). Achieving Ξ»/10 resolution CW STED nanoscopy with a Ti:Sapphire oscillator. PLoS One, 7, e40003. https://doi.org/10.1371/journal.pone.0040003.

  • Liu, Y., Kuang, C., and Liu, X. (2015). The use of azimuthally polarized sinh-Gauss beam in STED microscopy. Journal of Optics, 17(4), 045609.

    Google ScholarΒ 

  • Maleev, I. D., and Swartzlander, G. A., Jr. (2003). Composite optical vortices. Journal of Optical Society of America B, 20, 1169–1176.

    Google ScholarΒ 

  • Meinecke, F. (1996). Stimulierte Emission im Fluoreszenzmikroskop: Das STED-Konzept zur Überwindugn der Abbeschen Beugungsgrenze. Diploma thesis, Ruperto-Carola University of Heidelberg, Germany.

    Google ScholarΒ 

  • Moneron, G., and Hell, S. W. (2009). Two-photon excitation STED microscopy. Optics Express, 17, 14567–14573.

    Google ScholarΒ 

  • Okhonin, V. A. (1991). Method of investigating specimen microstructure, Patent SU 1374922, (See also in the USSR patents database SU 1374922) priority date April 10, 1986, Published on July 30, 1991, Soviet Patents Abstracts, Section EI, Week 9218, Derwent Publications Ltd., London, GB; Class S03, p. 4. Cited by patents US 5394268 A (1993) and US RE38307 E1 (1995). From the [https://www.researchgate.net/profile/Victor_Okhonin/publication/272021175_STED_Priority_1986_Eng_Transl/links/54d8ca860cf2970e4e793c8b.pdf?origin=publication_detailEnglishtranslation]. Accessed August 20, 2017.

  • Pezzagna, S., Rogalla, D., Wildanger, D., Meijer, J., and Zaitsev, A. (2011). Creation and nature of optical centres in diamond for single-photon emissionβ€”Overview and critical remarks. New Journal of Physics, 13, 1–27.

    Google ScholarΒ 

  • Punge, A., Rizzoli, S. O., Jahn, R., Wildanger, J. D., Meyer, L., SchΓΆnle, A., Kastrup, L., and Hell, S. W. (2008). 3D reconstruction of high-resolution STED microscope images. Microscopy Research and Technique, 71, 644–650.

    Google ScholarΒ 

  • Rankin, B. R., Kellner, R. R., and Hell, S. W. (2008). Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman scattering light source. Optics Letters, 33, 2491–2493.

    Google ScholarΒ 

  • Richards, B., and Wolf, E. (1959). Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London A, 253, 358–379.

    Google ScholarΒ 

  • Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C., and Hell, S. W. (2009). STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics, 3, 144–147.

    Google ScholarΒ 

  • Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S. W. (2008). Spherical nanosized focal spot unravels the interior of cells. Nature Methods, 5, 539–544.

    Google ScholarΒ 

  • Tinnefeld, P., Eggeling, C., and Hell, S. W. (2015). Far-Field Optical Nanoscopy. Berlin: Springer.

    Google ScholarΒ 

  • TΣ§rΣ§k, P., and Munro, P. (2004). The use of Gauss-Laguerre vector beams in STED microscopy. Optics Express, 12, 3605–3617.

    Google ScholarΒ 

  • Vaughan, J. M., and Willetts, D. V. (1983). Temporal and interference fringe analysis of TEM *01 laser modes. Journal of Optical Society of America, 73, 1018–1021.

    Google ScholarΒ 

  • Warren, W. S., Rabitz, H., and Dahleh, M. (1993). Coherent control of quantum dynamics: The dream is alive. Science, 259, 1581–1589.

    Google ScholarΒ 

  • Weiss, S. (2000). Shattering the diffraction limit of light: A revolution in fluorescence microscopy? Proceedings of the National Academy of Sciences of the United States of America, 97, 8747–8749.

    Google ScholarΒ 

  • Wildanger, D., Maze, J. R., and Hell, S. W. (2011). Diffraction unlimited all-optical recording of electron spin resonances. Physical Review Letters, 107, 017601-1–017601-4.

    Google ScholarΒ 

  • Xue, Y., Kuang, C., Li, S., Gu, Z., and Liu, X. (2012). Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Optics Express, 20, 17653–17666.

    Google ScholarΒ 

  • Zhan, Q. (2009). Cylindrical vector beams: From mathematical concepts to applications. Advances in Optics and Photonics, 1, 1–57.

    Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Masters .

Rights and permissions

Reprints and permissions

Copyright information

Β© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masters, B.R. (2020). Stimulated Emission Depletion Microscopy and Related Techniques. In: Superresolution Optical Microscopy. Springer Series in Optical Sciences, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21691-7_14

Download citation

Publish with us

Policies and ethics