Skip to main content

Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows

  • Chapter
  • First Online:
All Around the Nose

Abstract

Computational fluid dynamics methods enable to numerically predict complex flows with the help of computers. In the fields of Engineering and Physics they are already in use for decades to support design decissions and to get insight into complex physical phenomena. The simulation techniques have massively evolved over the past years and can nowadays be applied in medical context to analyze bio-fluidmechanical processes. Thanks to the continuous increase of computational power and parallelism as well as algorithmic advancements, accurate predictions of the flow in the nasal cavity are possible today. This chapter introduces the reader to the concepts of the computational fluid dynamics of the nose. It delivers some fundamentals on pre-processing medical image data, various techniques to generate computational meshes and gives an overview of methods to solve the governing equations of fluid motion. Thereby, advantages and disadvantages of the various approaches are explained. Subsequently, a variety of methods to analyze the flow and particle dynamics in the nasal cavity, ranging from streamline visualizations, pressure loss and temperature increase considerations, wall-shear stress and heat-flux distributions, to the analysis of the particle deposition behavior and transitional flow, is presented. The chapter concludes with how such methods can be used in clinical applications and elaborates how future developments might support decision making in medical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 15 May 2020

    Chapter 9 was inadvertently published with the following error: On page 77, Figures 9.1a and 9.1b were missed out, which have been included in this erratum.

Notes

  1. 1.

    3D Slicer https://www.slicer.org

  2. 2.

    MITK http://mitk.org

  3. 3.

    OsiriX http://osirix-viewer.com

  4. 4.

    Materialise http://biomedical.materialise.com

  5. 5.

    ANSYS ICEM CFD http://resource.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD

  6. 6.

    ANSYS Meshing http://www.ansys.com/Products/Platform/ANSYS-Meshing

  7. 7.

    PointwiseGridgen http://www.pointwise.com/pw

  8. 8.

    SALOME http://www.salome-platform.org

  9. 9.

    OpenFOAM http://www.openfoam.com

  10. 10.

    snappyHexMesh https://github.com/nogenmyr/swiftSnap

  11. 11.

    NETGEN http://www.hpfem.jku.at/netgen/

  12. 12.

    ANSYS Fluent http://www.ansys.com/Products/Fluids/ANSYS-Fluent

  13. 13.

    ANSYS CFX http://www.ansys.com/Products/Fluids/ANSYS-CFX

  14. 14.

    CD-adapco STAR-CD http://www.cd-adapco.com/products/star-cd

  15. 15.

    CD-adapco STAR-CCM+ http://www.cd-adapco.com/products/star-ccm

  16. 16.

    EXA PowerFLOW http://exa.com/product/simulation-tools/powerflow-cfd-simulation

  17. 17.

    OpenLB http://optilb.org/openlb

  18. 18.

    Code Saturne http://code-saturne.org

  19. 19.

    ZFS http://www.aia.rwth-aachen.de

  20. 20.

    Alya http://www.bsc.es/es/computer-applications/alya-system

References

  1. Naftali S, Schroter RC, Shiner RJ, Elad D. Transport phenomena in the human nasal cavity: a computational model. Ann Biomed Eng. 1998;26(5):831–9.

    Google Scholar 

  2. Hörschler I, Meinke M, Schröder W. Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluids. 2003;32(1):39–45. https://doi.org/10.1016/S0045-7930(01)00097-4.

  3. Naftali S, Rosenfeld M, Wolf M, Elad D. The air-conditioning capacity of the human nose. Ann Biomed Eng. 2005;33(4):545–53. https://doi.org/10.1007/s10439-005-2513-4.

  4. Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol. 2006;100(3):1003–10. https://doi.org/10.1152/japplphysiol.01049.2005.

  5. Hörschler I, Schröder W, Meinke M. On the assumption of steadiness of nasal cavity flow. J Biomech. 2010;43(6):1081–5. https://doi.org/10.1016/j.jbiomech.2009.12.008.

  6. Shi H, Kleinstreuer C, Zhang Z. Dilute suspension flow with nanoparticle deposition in a representative nasal airway model. Phys Fluids. 2008;20(1):013301. https://doi.org/10.1063/1.2833468.

  7. Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege HC. Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph. 2009;15(6):1407–14. https://doi.org/10.1109/TVCG.2009.198.

  8. Gambaruto A, Taylor D, Doorly D. Modelling nasal airflow using a Fourier descriptor representation of geometry. Int J Numer Methods Fluids. 2009;59(11):1259–83. https://doi.org/10.1002/fld.1866.

  9. Riazuddin VN, Zubair M, Shuaib IL, Abdullah MZ, Hamid SA, Ahmad KA. Numerical study of inspiratory and expiratory flow in a human nasal cavity. J Med Biol Eng. 2010;31(3):201–6. https://doi.org/10.5405/jmbe.781.

  10. Lintermann A, Meinke M, Schröder W. Investigations of nasal cavity flows based on a lattice- Boltzmann method, in: Resch M, Wang X, Bez W, Focht E, Kobayashi H, Roller S (Eds.), High performance computing on vector systems 2011, Springer Berlin, 2012, pp. 143–158. doi:https://doi.org/10.1007/978-3-642-22244-3.

    Chapter  Google Scholar 

  11. Lintermann A, Meinke M, Schröder W. Investigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), Brussels, Belgium, 2011.

    Google Scholar 

  12. Gambaruto AM, Taylor DJ, Doorly DJ. Decomposition and description of the nasal cavity form. Ann Biomed Eng. 2012;40(5):1142–59. https://doi.org/10.1007/s10439-011-0485-0.

  13. Achilles N, Pasch N, Lintermann A, Schröder W, Mösges R. Computational fluid dynamics: a suitable assessment tool for demonstrating the antiobstructive effect of drugs in the therapy of allergic rhinitis. ActaotorhinolaryngologicaItalica: organoufficialedellaSociet’aitaliana di otorinolaringologia e chirurgiacervico-facciale. 2013;33(1):36–42.

    Google Scholar 

  14. Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech. 2013;46(2):299–306. https://doi.org/10.1016/j.jbiomech.2012.11.022.

  15. Lintermann A, Meinke M, Schröder W. Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med. 2013;43(11):1833–52. https://doi.org/10.1016/j.compbiomed.2013.09.003.

  16. Bates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, et al. Dynamics of airflow in a short inhalation. J R Soc Interface. 2014;12(102):20140880. https://doi.org/10.1098/rsif.2014.0880.

  17. Shang Y, Inthavong K, Tu J. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids. 2015;114:141–50. https://doi.org/10.1016/j.compfluid.2015.02.020.

  18. Henn T, Thäter G, Dörfler W, Nirschl H, Krause MJ. Parallel dilute particulate flow simulations in the human nasal cavity. Comput Fluids. 2016;124:197–207. https://doi.org/10.1016/j.compfluid.2015.08.002.

  19. Calmet H, Gambaruto A, AM BAJ, Vázquez M, Houzeaux G, Doorly DJ. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med. 2016;69:166–80. https://doi.org/10.1016/j.compbiomed.2015.12.003.

  20. Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First steps to develop and validate a CFPD model in order to support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res. 33:1337. https://doi.org/10.1007/s11095-016-1875-7.

  21. Eitel G, Freitas RK, Lintermann A, Meinke M, Schröder W. Numerical simulation of nasal cavity flow based on a lattice-Boltzmann method. In: Dillmann A, Heller G, Klaas M, Kreplin HP, Nitsche W, Schröder W, editors. New results in numerical and experimental fluid mechanics VII, 112 of notes on numerical fluid mechanics and multidisciplinary design. Berlin: Springer; 2010. p. 513–20.

    Chapter  Google Scholar 

  22. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics. 1987;21(4):163–9.

    Google Scholar 

  23. Taubin G, Zhang T, Golub G. Optimal surface smoothing as filter design. Computer Vision ECCV. 1996;96:283–92.

    Google Scholar 

  24. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet F-RJJC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

  25. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 2013;8(4):607–20. https://doi.org/10.1007/s11548-013-0840-8.

  26. Rosset A, Spadola L, Ratib O. Osiri X. an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16. https://doi.org/10.1007/s10278-004-1014-6.

  27. Lintermann A, Schlimpert S, Grimmen J, Günther C, Meinke M, Schröder W. Massively parallel grid generation on HPC systems. Comput Methods Appl Mech Eng. 2014;277:131–53. https://doi.org/10.1016/j.cma.2014.04.009.

  28. Chien KY. Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 1982;20(1):33–8. https://doi.org/10.2514/3.51043.

  29. Wilcox DC. Formulation of the k-omega turbulence model revisited, in: 45th AIAA aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2007. doi:10.2514/6.2007-1408.

    Google Scholar 

  30. Anderson JDJ. Computational fluid dynamics. Singapore: MacGraw-Hill; 1995.

    Google Scholar 

  31. Succi S. The lattice Boltzmann equation: theory and applications, vol. 222. Rome: Oxford University Press; 2001.

    Google Scholar 

  32. Kopriva DA. Implementing spectral methods for partial differential equations, scientific computation. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-2261-5.

  33. Bernoulli D. Hydrodynamica, sive de viribus et motibusfluidorumcommentarii: opus academicumabauctore, dumPetropoliageret, congestum, 1738. doi:https://doi.org/10.3931/e-rara-3911.

  34. Finck M, Hänel D, Wlokas I. Simulation of nasal flow by lattice Boltzmann methods. Comput Biol Med. 2007;37(6):739–49. https://doi.org/10.1016/j.compbiomed.2006.06.013.

  35. Hörschler I, Schröder W, Meinke M. Comparison of steady and unsteady nasal cavity flow solutions for the complete respiration cycle. Comput Fluid Dyn J. 2006;15(3):354–77.

    Google Scholar 

  36. Vogt K, Hoffrichter H. Neueströmungs physikalische Erkenntnisse in der Rhinomanometrie und ihrepraktischenKonsequenzen. In: Mösges S, editor. TopischeTherapie der allergischen Rhinitis. Germany: Biermann; 1993. p. 45–60.

    Google Scholar 

  37. Haller G. An objective definition of a vortex. J Fluid Mech. 2005;525:1–26. https://doi.org/10.1017/S0022112004002526.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lintermann Dr.-Ing. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lintermann, A. (2020). Application of Computational Fluid Dynamics Methods to Understand Nasal Cavity Flows. In: Cingi, C., Bayar Muluk, N. (eds) All Around the Nose. Springer, Cham. https://doi.org/10.1007/978-3-030-21217-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21217-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21216-2

  • Online ISBN: 978-3-030-21217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics