Skip to main content

Regenerative Medicine in Rhinology

  • Chapter
  • First Online:
All Around the Nose
  • 111 Accesses

Abstract

Regenerative medicine, using stem cells with or without scaffolds, allows surgeons to treat congenital or acquired defects with normal structure and functions. Although stem cell and regenerative medicine are nowadays used quite often in some areas of medicine, it is obvious that they are in their crawling stage in reconstructive surgery and in rhinology. However, it is not difficult to predict that it will become popular in the next few decades and will be among the treatment regimens in the guidelines. The various developments in isolation, duplication, and differentiation of stem cells and three-dimensional scaffolds suggest that some of the more frequently applied therapies may be shelved in the close future. Stem cells are categorized as embryonic stem cells, induced pluripotent stem cells and adult stem cells. Adult stem cells are generally preferred in practice nowadays due to ease of isolation and differentiation stages. The purpose of this section is to provide information on stem cell applications and regenerative medicine in rhinology at present and in close future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walia B, Satija N, Tripathi RP, Gangenahalli GU. Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev. 2012;8(1):100–15.

    Article  CAS  Google Scholar 

  2. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10.

    Article  PubMed  Google Scholar 

  3. Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther. 2005;5(7):879–92.

    Article  CAS  PubMed  Google Scholar 

  4. Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: Ethics in the face of long-term uncertainty. Account Res. 2009;16(4):175–98.

    Article  PubMed  Google Scholar 

  5. Camporesi S. The context of embryonic development and its ethical relevance. Biotechnol J. 2007;2(9):1147–53.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  9. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  10. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5.

    Article  CAS  PubMed  Google Scholar 

  11. Korbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.

    Article  PubMed  Google Scholar 

  12. McCormick JB, Huso HA. Stem cells and ethics: current issues. J Cardiovasc Transl Res. 2010;3(2):122–7.

    Article  PubMed  Google Scholar 

  13. Wu CH, Lee FK, Suresh Kumar S, Ling QD, Chang Y, Chang Y, et al. The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials. 2012;33(33):8228–39.

    Article  CAS  PubMed  Google Scholar 

  14. Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, et al. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem. 2012;113(10):3153–64.

    Article  CAS  PubMed  Google Scholar 

  15. Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP, Nino-Fong R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res. 2012;73(8):1305–17.

    Article  CAS  PubMed  Google Scholar 

  16. Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T. Skin-derived multipotent stromal cells--an archrival for mesenchymal stem cells. Cell Tissue Res. 2012;350(1):1–12.

    Article  PubMed  Google Scholar 

  17. Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med. 2011;11(57):160–70.

    PubMed  Google Scholar 

  18. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uz U, Günhan K. Stem cell and regenerative medicine in rhinology: review. Turk J Rhinol. 2015;4(2):90–6.

    Article  Google Scholar 

  20. Nose Y, Okubo H. Artificial organs versus regenerative medicine: is it true? Artif Organs. 2003;27(9):765–71.

    Article  PubMed  Google Scholar 

  21. Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9. Doc07

    Google Scholar 

  22. Uz U, Chen B, Palmer JN, Cingi C, Unlu H, Cohen NA. Effects of thymoquinone and montelukast on sinonasal ciliary beat frequency. Am J Rhinol Allergy. 2014;28(2):122–5.

    Article  PubMed  Google Scholar 

  23. Wang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep. 2015;15(1):490.

    Article  PubMed  CAS  Google Scholar 

  24. Huang TW, Young YH, Cheng PW, Chan YH, Young TH. Culture of nasal epithelial cells using chitosan-based membranes. Laryngoscope. 2009;119(10):2066–70.

    Article  CAS  PubMed  Google Scholar 

  25. Lee KC, Lee NH, Ban JH, Jin SM. Surgical treatment using an allograft dermal matrix for nasal septal perforation. Yonsei Med J. 2008;49(2):244–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, et al. A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials. 2010;31(18):4855–63.

    Article  CAS  PubMed  Google Scholar 

  27. Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.

    Article  PubMed  Google Scholar 

  28. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  29. Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383(9913):238–44.

    Article  PubMed  Google Scholar 

  30. Yanaga H, Imai K, Yanaga K. Generative surgery of cultured autologous auricular chondrocytes for nasal augmentation. Aesthet Plast Surg. 2009;33(6):795–802.

    Article  Google Scholar 

  31. Sandor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gunhan K, Bariskan S, Uz U, Vatansever S, Kivanc M. 13-93B3 bioactive glass: a new scaffold for transplantation of stem cell-derived chondrocytes. J Craniofac Surg. 2018;29(1):233–6.

    Article  PubMed  Google Scholar 

  33. Kim HJ, Im GI. Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2009;15(7):1543–51.

    Article  CAS  PubMed  Google Scholar 

  34. Duda GN, Haisch A, Endres M, Gebert C, Schroeder D, Hoffmann JE, et al. Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo. J Biomed Mater Res. 2000;53(6):673–7.

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006;12(10):2729–38.

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez JS, Alvarez VA. Mechanical properties of polyvinyl alcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47–56.

    Article  CAS  PubMed  Google Scholar 

  37. Planas J. The use of Integra in rhinoplasty. Aesthet Plast Surg. 2011;35(1):5–12.

    Article  Google Scholar 

  38. Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al. IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells. 2009;27(1):250–8.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuda K, Falkenberg KJ, Woods AA, Choi YS, Morrison WA, Dilley RJ. Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A. 2013;19(11–12):1327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao J, Hu L, Liu J, Gong N, Chen L. The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fibroblasts in vitro. Biomed Res Int. 2013;2013:578479.

    PubMed  PubMed Central  Google Scholar 

  41. Formigli L, Paternostro F, Tani A, Mirabella C, Quattrini A, Nosi D, et al. MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2015.

    Google Scholar 

  42. Chou RH, Lu CY, Wei L, Fan JR, Yu YL, Shyu WC. The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplant. 2014;23(4–5):567–71.

    Article  PubMed  Google Scholar 

  43. Goldstein BJ, Fang H, Youngentob SL, Schwob JE. Transplantation of multipotent progenitors from the adult olfactory epithelium. Neuroreport. 1998;9(7):1611–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jang W, Lambropoulos J, Woo JK, Peluso CE, Schwob JE. Maintaining epitheliopoietic potency when culturing olfactory progenitors. Exp Neurol. 2008;214(1):25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mariano ED, Teixeira MJ, Marie SK, Lepski G. Adult stem cells in neural repair: Current options, limitations and perspectives. World J Stem Cells. 2015;7(2):477–82.

    Article  PubMed  PubMed Central  Google Scholar 

  46. McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, et al. Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res. 2006;82(2–3):163–73.

    Article  PubMed  Google Scholar 

  47. Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han LY, et al. Olfactory epithelium amyloid-beta and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol. 2010;67(4):462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech. 2010;3(11–12):785–98.

    Article  CAS  PubMed  Google Scholar 

  49. Uzdan Uz, Kivanc Gunhan, Seda Vatansever, Mujde Kivanc, Ali Vefa Yuceturk, Novel Simple Strategy for Cartilage Tissue Engineering Using Stem Cells and Synthetic Polymer Scaffold. Journal of Craniofacial Surgery 30 (3):940–943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Günhan, K., Uz, U. (2020). Regenerative Medicine in Rhinology. In: Cingi, C., Bayar Muluk, N. (eds) All Around the Nose. Springer, Cham. https://doi.org/10.1007/978-3-030-21217-9_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21217-9_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21216-2

  • Online ISBN: 978-3-030-21217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics