Skip to main content

Anhydrobiosis in Non-conventional Yeasts

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

Anhydrobiosis is a unique state of living organisms that provides the possibility of surviving conditions of extreme heat and drought with temporary and reversible suspended processes of metabolism. Beyond its ecological importance in nature, it is used for the production of viable dry microbial preparations, including active dry yeast. During the last decade, this state has also been studied in non-conventional yeasts (NCY), mainly because of the necessity of active dry wine yeasts. At the same time, many other modern biotechnological processes are also linked to the use of NCY. Correspondingly, this implies an interest in the long-term maintenance of various species of NCY in a viable dry state. This review describes the results of studies of the dehydration of various NCY species. It demonstrates the very important contribution of these yeasts to the development of our knowledge of this unique phenomenon of nature. The results of the structural and biochemical investigations of NCY have revealed the main cell changes during their dehydration-rehydration, as well as the intracellular protective reactions necessary for the maintenance of yeast cell viability. The synthesis of various intracellular protective compounds was shown in NCY cells under the conditions of their dehydration-rehydration. All of this accumulated information is important for the development of new approaches for the successful production and use of biotechnologically important species of NCY in an active dry state, as well as for the improvement of our knowledge of the mechanisms of anhydrobiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Teixido N, Usall J, Solsona C, Vinasm I (2005) Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying. Biocontrol Sci Tech 15:835–846

    Article  Google Scholar 

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    Article  CAS  Google Scholar 

  • Aidoo KE, Nout MR, Sarkar PK (2006) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6:30–39

    Article  CAS  PubMed  Google Scholar 

  • Amar EC, Kiron V, Satoh S, Watanabe T (2001) Influence of various dietary synthetic carotenoids on bio-defence mechanisms in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 32:162–173

    Article  CAS  Google Scholar 

  • Anbazahan SM, Marim LSS, Yogeshwari G, Jagruthi C, Thirumurugan R, Arockiaraj J, Velanganni AAJ, Krishnamoorthy P, Balasundaram C, Harikrishnan R (2014) Immune response and disease resistance of carotenoids supplementation diet in Cyprinus carpio against Aeromonas hydrophila. Fish Shellfish Immunol 40:9–13

    Article  CAS  PubMed  Google Scholar 

  • Andorrà I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamon JM (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. LWT – Food Sci Technol 49:8–13

    Article  CAS  Google Scholar 

  • Andrade MJ, Thorsen L, Rodrıguez A, Cordoba JJ, Jespersen L (2014) Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. Int J Food Microbiol 170:70–77

    Article  CAS  PubMed  Google Scholar 

  • Aplin JJ, White KP, Edwards CG (2019) Growth and metabolism of non-Saccharomyces yeasts isolated from Washington state vineyards in media and high sugar grape musts. Food Microbiol 77:158–165

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120

    Article  CAS  Google Scholar 

  • Beker MJ, Rapoport AI (1987) Conservation of yeasts by dehydration. Adv Biochem Engineer/Biotechnol 35:127–171

    Google Scholar 

  • Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckii – Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320

    Article  CAS  PubMed  Google Scholar 

  • Benito S, Palomero F, Morata A, Calderón F, Suárez-Lepe JA (2012) New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int J Food Sci Technol 47:2101–2108

    Article  CAS  Google Scholar 

  • Bhosale P, Jogdand VV, Gadre RV (2003) Stability of b-carotene in spray dried preparation of Rhodotorula glutinis mutant 32. J Appl Microbiol 95:584–590

    Article  CAS  PubMed  Google Scholar 

  • Biryusova VI, Rapoport AI (1978) Cryofractographic investigation of the structure of yeast cells in an anabiotic state. Microbiol 47:245–251

    Google Scholar 

  • Borovikova D, Scherbaka R, Patmalnieks A, Rapoport A (2014) Effects of yeast immobilisation on bioethanol production. Biotechnol Appl Biochem 61:33–39

    Article  CAS  PubMed  Google Scholar 

  • Breuer U, Harms H (2006) Debaryomyces hansenii—an extremophilic yeast with biotechnological potential. Yeast 23:415–437

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Goretti M, Branda E, Turchetti B (2010) Basidiomycetous yeasts for production of carotenoids. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 1. Wiley, New York, pp 469–481

    Google Scholar 

  • Câmara AA Jr, Maréchal P-A, Tourdot-Maréchal R, Husson F (2019) Dehydration stress responses of yeasts Torulaspora delbrueckii, Metschnikowia pulcherrima and Lachancea thermotolerans: effects of glutathione and trehalose biosynthesis. Food Microbiol 79:137–146

    Article  PubMed  CAS  Google Scholar 

  • Canonico L, Comitini F, Ciani M (2017) Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. Int J Food Microbiol 259:7–13

    Article  CAS  PubMed  Google Scholar 

  • Canonico L, Comitini F, Ciani M (2018) Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol 74:100–106

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Liu S-Q (2016) Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT – Food Sci Technol (Lebensmittel-Wissenschaft -Technol) 65:53–61

    Article  CAS  Google Scholar 

  • Chen K, Escott C, Loira I, del Fresno JM, Morata A, Tesfaye W, Calderon F, Suárez-Lepe JA, Han S, Benito S (2018) Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: influence on colour, aroma and sensorial properties of young wines. Food Microbiol 69:51–63

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T (2009) Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 27:423–431

    Article  CAS  PubMed  Google Scholar 

  • Colomer MS, Funch B, Forster J (2019) The raise of Brettanomyces yeast species for beer production. Cur Opinion Biotechnol 56:30–35

    Article  CAS  Google Scholar 

  • Crowe JH (1971) Anhydrobiosis: an unsolved problem. Am Nat 105:563–574

    Article  Google Scholar 

  • Crowe JH (2015) Anhydrobiosis: an unsolved problem with applications in human welfare. Subcell Biochem 71:263–280

    Article  CAS  PubMed  Google Scholar 

  • De Francesco G, Turchetti B, Sileoni V, Marconi O, Perretti G (2015) Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J Inst Brew 121:113–121

    Article  CAS  Google Scholar 

  • Druvefors UA, Schnurer J (2005) Mold-inhibitory activity of different yeast species during airtight storage of wheat grain. FEMS Yeast Res 5:373–378

    Article  CAS  Google Scholar 

  • Dupont S, Rapoport A, Gervais P, Beney L (2014) The survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834

    Article  CAS  PubMed  Google Scholar 

  • Escott C, Del Fresno JM, Loira I, Morata A, Tesfaye W, González MC, Suárez-Lepe JA (2018) Formation of polymeric pigments in red wines through sequential fermentation of flavanol-enriched musts with non-Saccharomyces yeasts. Food Chem 239:975–983

    Article  CAS  PubMed  Google Scholar 

  • Espindola AS, Gomes DS, Panek AD, Eleutherio EC (2003) The role of glutathione in yeast dehydration tolerance. Cryobiology 47:236–241

    Article  CAS  Google Scholar 

  • Fernandez I, Lopez-Joven C, Andree KB, Roque A, Gisbert E (2015) Vitamin A supplementation enhances Senegalese sole (Solea senegalensis) early juvenile’s immunocompetence: new insights on potential underlying pathways. Fish Shellfish Immunol 46:703–709

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  PubMed  Google Scholar 

  • Franca MB, Panek AD, Eleutherio ECA (2005) The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaper 10:167–170

    Article  CAS  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  PubMed  Google Scholar 

  • Gamero-Sandemetrio E, Gomez-Pastor R, Matallana E (2013) Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 97:4563–4576

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Carcel C, Dalau L, Samson A, Aguera E, Agosin E, Gunata Z (2002) Influence of a mixed culture with Debaryomyces vanriji and Saccharomyces cerevisiae on the volatiles in a Muscat wine. J Food Sci 67:1138–1143

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez A, Ochoa JL (1999) Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Arch Med Res 30:69–73

    Article  CAS  PubMed  Google Scholar 

  • Giorello F, Valera MJ, Martin V, Parada A, Salzman V, Camesasca L, Fariña L, Boido E, Medina K, Dellacassa E, Berna L, Aguilar PS, Mas A, Gaggero C, Carrau F (2019) Genomic and transcriptomic basis of Hanseniaspora vineae’s impact on flavor diversity and wine quality. Appl Environ Microbiol 85:e01959-18. https://doi.org/10.1128/AEM.01959-18

    Article  PubMed  Google Scholar 

  • Gschaedler A (2017) Contribution of non-conventional yeasts in alcoholic beverages. Curr Opinion Food Sci 13:73–77

    Article  Google Scholar 

  • Hernandez-Garcia A (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36:939–950

    Article  CAS  Google Scholar 

  • Hernandez-Garcia A (2014) Induced Anhydrobiosis: powerful method for the preservation of microorganisms. In: Harzevili FD, Chen H (eds) Microbial biotechnology: progress and trends. CRC Press/Taylor & Francis Group, Boca Raton, pp 113–130

    Chapter  Google Scholar 

  • Holt S, Mukherjee V, Lievens B, Verstrepen KJ, Thevelein JM (2018) Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol 72:55–66

    Article  CAS  PubMed  Google Scholar 

  • Hostinová E (2002) Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia 57:247–252

    Google Scholar 

  • Kapsopoulou K, Mourtzini A, Anthoulas M, Nerantzis E (2007) Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:735–739

    Article  CAS  Google Scholar 

  • Khroustalyova GM, Adler L, Rapoport AI (2001) Exponential growth phase cells of the osmotolerant yeast Debaryomyces hansenii are extremely resistant to dehydration stress. Process Biochem 36:1163–1166

    Article  CAS  Google Scholar 

  • Khroustalyova G, Giovannitti G, Severini D, Scherbaka R, Turchetti B, Buzzini P, Rapoport A (2019) Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration. Yeast, 2019;1–5. https://doi.org/10.1002/yea.3382

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Lee S-B, Jeon J-Y, Park H-D (2019) Development of air-blast dried non-Saccharomyces yeast starter for improving quality of Korean persimmon wine and apple cider. Int J Food Microbiol 290:193–204

    Article  CAS  PubMed  Google Scholar 

  • Krallish I, Jeppsson H, Rapoport A, Hanh-Hagerdal B (1994) The influence of the intracellular polyol content on the viability of xylose utilizing yeasts during dehydration-rehydration process. Cell Biol Intern 18:459

    Google Scholar 

  • Krallish I, Jeppsson H, Rapoport A, Hahn-Hagerdal B (1997) Effect of xylitol and trehalose on dry resistance of yeasts. Appl Microbiol Biotechnol 47:447–451

    Article  CAS  PubMed  Google Scholar 

  • Kulikova-Borovikova D, Khroustalyova G, Chang C-R, Daugelavicius R, Yurkiv M, Ruchala J, Sibirny A, Rapoport A (2018) Anhydrobiosis in yeast: glutathione overproduction improves resistance to dehydration of a recombinant Ogataea (Hansenula) polymorpha strain. Process Biochem 71:41–44

    Article  CAS  Google Scholar 

  • Kulkarni P, Loira I, Morata A, Tesfaye W, González MC, Suárez-Lepe JA (2015) Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT-Food Sci Technol 64:1255–1262

    Article  CAS  Google Scholar 

  • Lachance M-A (2016) Metschnikowia: half tetrads, a regicide, and the fountain of youth. Yeast 33:563–557

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Gilbert GD, Starmer WT (1995) Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. J Ind Microbiol 14:484–494

    Article  CAS  PubMed  Google Scholar 

  • Liu PT, Lu L, Duan CQ, Yan GL (2016) The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT – Food Sci Technol 71:356–363

    Article  CAS  Google Scholar 

  • Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for nonconventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Matallana E, Aranda A (2016) Biotechnological impact of stress response on wine yeast. Lett Appl Microbiol 64:103–110

    Article  PubMed  CAS  Google Scholar 

  • Maturano YP, Mestre MV, Kuchen B, Toro ME, Mercado LA, Vazquez F, Combina M (2019) Optimization of fermentation-relevant factors: a strategy to reduce ethanol in red wine by sequential culture of native yeasts. Int J Food Microbiol 289:40–48

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Hakansson S, Schnurer J (2007) Optimization of liquid and dry formulations of the biocontrol yeast Pichia anomala. Appl Microbiol Biotechnol 73:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Schnurer J, Hakansson S (2011) Formulation and stabilisation of the biocontrol yeast Pichia anomala. Antonie Van Leeuwenhoek 99:107–112

    Article  CAS  PubMed  Google Scholar 

  • Mi Lee S, Jung JH, Seo J-A, Kim Y-S (2018) Bioformation of volatile and nonvolatile metabolites by Saccharomycopsis fibuligera KJJ81 cultivated under different conditions—carbon sources and cultivation times. Molecules 23:2762

    Article  CAS  Google Scholar 

  • Miller MW, Phaff HJ (1998) Saccharomycodes E.C. Hansen. In: Kurtzman CP, Fell JW (eds) The yeasts. A taxonomic study, 4th edn. Elsevier, New York, pp 372–373

    Chapter  Google Scholar 

  • Modi RC, Walton JC, Burton GW, Hughes L, Ingold KH, Hudsay DA, Maffatt DJ (1993) Oxidative degradation of b-carotene and b-apo-8-carotenal. Tetrahedron 49:911–992

    Article  Google Scholar 

  • Muter O, Rapoport A (2013) Some physiological aspects of chromium sorption by yeasts. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Muter O, Patmalnieks A, Rapoport A (2001a) Interrelations of the yeast Candida utilis and Cr (VI): metal reduction and its distribution in the cell and medium. Process Biochem 36:963–970

    Article  CAS  Google Scholar 

  • Muter O, Millers D, Grigorjeva L, Ventina E, Rapoport A (2001b) Cr(VI) sorption by intact and dehydrated Candida utilis cells: differences in mechanisms. Process Biochem 37:505–511

    Article  Google Scholar 

  • Muter O, Lubinya I, Millers D, Grigorjeva L, Ventinya E, Rapoport A (2002) Cr (VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals. Process Biochem 38:123–131

    Article  CAS  Google Scholar 

  • Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Microbiol 54:374–392

    Google Scholar 

  • Nunez F, Lara MS, Peromingo B, Delgado J, Sanchez-Montero L, Andrade MJ (2015) Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiol 46:114–120

    Article  CAS  PubMed  Google Scholar 

  • Palomero F, Morata A, Benito S, Calderón F, Suárez-Lepe JA (2009) New genera of yeasts for over-lees aging of red wine. Food Chem 112:432–441

    Article  CAS  Google Scholar 

  • Peinado RA, Maestre O, Mauricio JC, Moreno J (2009) Use of a Schizosaccharomyces pombe mutant to reduce the content in gluconic acid of must obtained from rotten grapes. J Agric Food Chem 57:2368–2377

    Article  CAS  PubMed  Google Scholar 

  • Pereira Ede J, Panek AD, Eleutherio EC (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperon 8:120–124

    Article  Google Scholar 

  • Pradelles R, Vichi S, Alexandre H, Chassagne D (2009) Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine. Int J Food Microbiol 135:152–157

    Article  CAS  PubMed  Google Scholar 

  • Rapoport AI (1973) Rejection of areas of damaged cytoplasm by microorganisms in a state of anabiosis. Microbiol 42:317–318

    Google Scholar 

  • Rapoport A (2017) Anhydrobiosis and dehydration of yeasts. In: Sibirny A (ed) Biotechnology of yeasts and filamentous Fungi. Springer, Cham, pp 87–116

    Chapter  Google Scholar 

  • Rapoport AI, Beker ME (1983) Effect of sucrose and lactose on resistance of the yeast Saccharomyces cerevisiae to dehydration. Microbiol 52:556–559

    Google Scholar 

  • Rapoport AI, Kostrikina NA (1973) Cytological investigation of an anabiosis state of yeast organisms. Proc Acad Sci USSR Biology 5:770–773. (in Russian)

    CAS  Google Scholar 

  • Rapoport A, Muter O (1995) Biosorption of hexavalent chromium by yeasts. Process Biochem 30:145–149

    Article  CAS  Google Scholar 

  • Rapoport AI, Biryuzova VI, Meisel MN (1973) Nuclear structure of yeast cells in the anabiotic state. Doklady Biol Sci 213:469–471

    Google Scholar 

  • Rapoport AI, Pomoshchnikova NA, Fateeva MV, Nikitina TN, Meissel MN (1981) Nucleic acids and resistance of yeast cells to dehydration. Microbiol 50:163–165

    Google Scholar 

  • Rapoport AI, Dreimane MA, Beker ME (1986) Influence of the dehydration process on Endomycopsis fibuligera yeasts. Microbiol 55:542–545

    Google Scholar 

  • Rapoport AI, Puzyrevskaya OM, Saubenova MG (1988) Polyols and resistance of yeasts to dehydration. Microbiol 57:269–271

    Google Scholar 

  • Rapoport AI, Khroustalyova GM, Adler L, Crowe JH (1995) Anhydrobiosis of yeast: main factors which determine maintenance of cell viability. Sociedade Brasileira de Bioquimica e Biologia Molecular (SBBq). Programa e Resumos da XXIV Reuniao Anual. Caxambu, MG, p 16

    Google Scholar 

  • Rapoport AI, Khroustalyova GM, Kuklina EN (1997) Anhydrobiosis in yeast: activation effect. Brazil J Medic Biologic Res 30:9–13

    Article  CAS  Google Scholar 

  • Rapoport A, Rusakova A, Khroustalyova G, Walker G (2014) Thermotolerance in Saccharomyces cerevisiae is linked to resistance to anhydrobiosis. Process Biochem 49:1889–1892

    Article  CAS  Google Scholar 

  • Rapoport A, Turchetti B, Buzzini P (2016) Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. World J Microbiol Biotechnol 32:104

    Article  PubMed  CAS  Google Scholar 

  • Rapoport A, Golovina EA, Gervais P, Dupont S, Beney L (2019) Anhydrobiosis: inside yeast cells. Biotechnol Adv 37:51–67

    Article  CAS  PubMed  Google Scholar 

  • Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Bahuleyan AK, Aneesh EM, Pandey A (2018) Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett 365:fny222

    CAS  Google Scholar 

  • Roca-Domènech G, López-Martínez G, Tirado V, Borrull A, Candelas O, Rozès N, Cordero-Otero R (2016) Viability enhancement of Schizosaccharomyces pombe cells during desiccation stress. J Microbiol Res 6:82–91

    Google Scholar 

  • Roca-Domènech G, López-Martínez G, Barrera E, Poblet M, Rozès N, Cordero-Otero R (2018) Enhancing the tolerance of the Starmerella bacillaris wine strain to dehydration stress. Annals Microbiol 68:667–676

    Article  CAS  Google Scholar 

  • Romano P, Marchese R, Laurita C, Saleano G, Turbanti L (1999) Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World J Microb Biot 15:451–454

    Article  CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  PubMed  Google Scholar 

  • Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón J-J, Ballester J, Vichi S, Guérin-Schneider R, Caixach J, Alexandre H (2012) Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253

    Article  CAS  PubMed  Google Scholar 

  • Sadoudi M, Rousseaux S, David V, Alexandre H, Tourdot-Maréchal R (2017) Metschnikowia pulcherrima influences the expression of genes involved in PDH bypass and glyceropyruvic fermentation in Saccharomyces cerevisiae. Front Microbiol 8:1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Scita G (1992) Stability of b-carotene under different laboratory conditions. In: Packer L (ed) Methods in enzymology, vol 213. Academic, San-Diego, pp 175–185

    Google Scholar 

  • Silva S, Ramon Portugal F, Andrade P, Texera M, Strehaino P (2003) Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe. Amer J Enol Viticult 54:50–55

    CAS  Google Scholar 

  • Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from D-xylose. Enzym Microb Technol 9:5–15

    Article  CAS  Google Scholar 

  • Taillandier P, Riba JP, Strehaiano P (1991) Malic degradation by Schizosaccharomyces yeasts included in alginate beads. Bioproc Engineer 7:141–144

    Article  CAS  Google Scholar 

  • Tilbury RH (1980) In: Skinner FA, Passmore SM, Davenport RR (eds) In biology and activities of yeasts. Academic, London, pp 153–176

    Google Scholar 

  • Vejarano R (2018) Saccharomycodes ludwigii, control and potential uses in winemaking processes. Fermentation 4:71

    Article  CAS  Google Scholar 

  • Viana F, Belloch C, Vallés S, Manzanares P (2011) Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 151:235–240

    Article  CAS  PubMed  Google Scholar 

  • Whitener MEB, Stanstrup J, Carlin S, Divol B, Du Toit M (2015) Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust J Grape Wine Res 33:179–192

    Google Scholar 

  • Zhang HY, Wang L, Ma LC, Dong Y, Jiang S, Xu B, Zheng XD (2009) Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. BioControl 48:79–83

    Google Scholar 

Download references

Acknowledgements

This work was supported by TW–LV-LT Foundation for Scientific Cooperation grant 2016–2019 and grant of the European Regional Development Fund (ERDF) No. 1.1.1.1/16/A/113

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rapoport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rapoport, A. (2019). Anhydrobiosis in Non-conventional Yeasts. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_10

Download citation

Publish with us

Policies and ethics