Skip to main content

Embedded Polarizing Filters to Separate Diffuse and Specular Reflection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

Polarizing filters provide a powerful way to separate diffuse and specular reflection; however, traditional methods rely on several captures and require proper alignment of the filters. Recently, camera manufacturers have proposed to embed polarizing micro-filters in front of the sensor, creating a mosaic of pixels with different polarizations. In this paper, we investigate the advantages of such camera designs. In particular, we consider different design patterns for the filter arrays and propose an algorithm to demosaic an image generated by such cameras. This essentially allows us to separate the diffuse and specular components using a single image. The performance of our algorithm is compared with a color-based method using synthetic and real data. Finally, we demonstrate how we can recover the normals of a scene using the diffuse images estimated by our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we use bold uppercase letters for matrix notation and the same letter in lowercase for its flattened version. Throughout this chapter, we interchangeably use both notations to denote the same object.

  2. 2.

    Technically, the TV norm is only a semi-norm.

References

  1. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 191139 (1980)

    Article  Google Scholar 

  2. Artusi, A., Banterle, F., Chetverikov, D.: A survey of specularity removal methods. Comput. Graph. Forum 30, 2208–2230 (2011)

    Article  Google Scholar 

  3. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10, 210–218 (1985)

    Article  Google Scholar 

  4. Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color images. Int. J. Comput. Vis. 2, 7–32 (1988)

    Article  Google Scholar 

  5. Gershon, R.: The use of color in computational vision. Technical report, Department of Computer Science, University of Toronto (1987)

    Google Scholar 

  6. Klinker, G.J., Shafer, S.A., Kanade, T.: A physical approach to color image understanding. Int. J. Comput. Vis. 4, 7–38 (1990)

    Article  Google Scholar 

  7. Mallick, S.P., Zickler, T., Belhumeur, P.N., Kriegman, D.J.: Specularity removal in images and videos: a PDE approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 550–563. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_43

    Chapter  Google Scholar 

  8. Yang, J., Liu, L., Li, S.Z.: Separating specular and diffuse reflection components in the HSI color space. In: IEEE International Conference on Computer Vision Workshops, pp. 891–898 (2013)

    Google Scholar 

  9. Mallick, S.P., Zickler, T.E., Kriegman, D.J., Belhumeur, P.N.: Beyond lambert: reconstructing specular surfaces using color. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 619–626. IEEE (2005)

    Google Scholar 

  10. Bajcsy, R., Lee, S.W., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. Int. J. Comput. Vis. 17, 241–272 (1996)

    Article  Google Scholar 

  11. Shen, H.L., Zheng, Z.H.: Real-time highlight removal using intensity ratio. Appl. Opt. 52, 4483–4493 (2013)

    Article  Google Scholar 

  12. Tan, R.T., Nishino, K., Ikeuchi, K.: Separating reflection components based on chromaticity and noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1373–1379 (2004)

    Article  Google Scholar 

  13. Mallick, S.P., Zickler, T., Belhumeur, P., Kriegman, D.: Dichromatic separation: specularity removal and editing. In: ACM SIGGRAPH 2006 Sketches, p. 166. ACM (2006)

    Google Scholar 

  14. Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 178–193 (2005)

    Article  Google Scholar 

  15. Yoon, K.J., Choi, Y., Kweon, I.S.: Fast separation of reflection components using a specularity-invariant image representation. In: IEEE International Conference on Image Processing, pp. 973–976. IEEE (2006)

    Google Scholar 

  16. Lamond, B., Peers, P., Ghosh, A., Debevec, P.: Image-based separation of diffuse and specular reflections using environmental structured illumination. In: IEEE Computational Photography (2009)

    Google Scholar 

  17. Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Eurographics Symposium on Rendering, pp. 183–194. Eurographics Association (2007)

    Google Scholar 

  18. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 935–944 (2006)

    Article  Google Scholar 

  19. Jaklič, A., Solina, F.: Separating diffuse and specular component of image irradiance by translating a camera. In: Chetverikov, D., Kropatsch, W.G. (eds.) CAIP 1993. LNCS, vol. 719, pp. 428–435. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57233-3_56

    Chapter  Google Scholar 

  20. Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.Y.: Diffuse-specular separation and depth recovery from image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_14

    Chapter  Google Scholar 

  21. Meng, L., Lu, L., Bedard, N., Berkner, K.: Single-shot specular surface reconstruction with gonio-plenoptic imaging. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3433–3441 (2015)

    Google Scholar 

  22. Wang, H., Xu, C., Wang, X., Zhang, Y., Peng, B.: Light field imaging based accurate image specular highlight removal. PLOS ONE 11, e0156173 (2016)

    Article  Google Scholar 

  23. Nayar, S.K., Fang, X.S., Boult, T.: Removal of specularities using color and polarization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 583–590 (1993)

    Google Scholar 

  24. Kim, D.W., Lin, S., Hong, K.S., Shum, H.Y.: Variational specular separation using color and polarization. In: MVA, pp. 176–179 (2002)

    Google Scholar 

  25. Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color and polarization. Int. J. Comput. Vis. 21, 163–186 (1997)

    Article  Google Scholar 

  26. Umeyama, S., Godin, G.: Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Trans. Pattern Anal. Mach. Intell. 26, 639–647 (2004)

    Article  Google Scholar 

  27. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: SIGGRAPH, pp. 145–156 (2000)

    Google Scholar 

  28. 4D Technologies: Polarization camera for image enhancement. https://www.4dtechnology.com/products/polarimeters/polarcam

  29. FluxData: Polarization imaging camera FD-1665P. http://www.fluxdata.com/products/fd-1665p

  30. Photonic Lattice: Polarization imaging camera PI-110. https://www.photonic-lattice.com/en/products/polarization_camera/pi-110/

  31. Ricoh Imaging Company Ltd.: Polarization camera. https://www.ricoh.com/technology/tech/051_polarization.html

  32. Cui, Z., Gu, J., Shi, B., Tan, P., Kautz, J.: Polarimetric multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1558–1567 (2017)

    Google Scholar 

  33. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Img. Sci. 2, 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  34. Blender Online Community: Blender - A 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam (2017)

    Google Scholar 

  35. Stanford Graphics Lab: The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Baechler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jospin, L.V., Baechler, G., Scholefield, A. (2019). Embedded Polarizing Filters to Separate Diffuse and Specular Reflection. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics