Skip to main content

Oxygen Carriers

  • Chapter
  • First Online:
Damage Control Resuscitation

Abstract

In blood, the primary role of RBCs is to transport oxygen via highly regulated mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two α- and two β-polypeptide chains, each containing an iron-containing heme group capable of binding one oxygen molecule. In military as well as civilian trauma, exsanguinating hemorrhage can lead to suboptimal tissue oxygenation and subsequent morbidity and mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. However, blood products including RBCs have limited availability and portability and present additional challenges related to type matching, pathogenic contamination risks, and short shelf-life. These issues lead to substantial logistical barriers to their pre-hospital use in austere battlefield and remote civilian conditions. While robust efforts are underway to resolve these issues, recent research breakthroughs have led to bioinspired engineering of RBC surrogates, using various cross-linked, polymeric, and encapsulated forms of Hb. These “next-generation” Hb-based oxygen carriers (HBOCs) can potentially provide therapeutic oxygenation when whole blood or RBCs are not available. Several of these HBOCs have undergone rigorous pre-clinical and clinical evaluation, but have not yet received clinical approval in the USA for human use. This chapter will comprehensively review both historical and new HBOC designs, including current state-of-the-art and novel molecules in development, along with a critical discussion of successes and challenges in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holcomb JB, McMullin NR, Pearse L, Caruso J, Wade CE, Oetjen-Gerdes L, Champion HR, Lawnick M, Farr W, Rodriguez S, et al. Causes of death in U.S. Special Operations Forces in the Global War on terrorism, 2001–2004. Ann Surg. 2007;245(6):986–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blackbourne LH, Baer DG, Eastridge BJ, Kheirabadi B, Bagley S, Kragh JF Jr, Cap AP, Dubick MA, Morrison JJ, Midwinter MJ, et al. Military medical revolution: prehospital combat casualty care. J Trauma Acute Care Surg. 2012;76(6 Suppl 5):S372–7.

    Article  Google Scholar 

  3. Cohen MJ, Kutcher M, Redick B, Nelson M, Call M, Knudson MM, Schreiber MA, Bulger EM, Muskat P, Alarcon LH, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorlac WC, DeBakey ME, Holcomb JB, Fagan SP, Kwong KL, Dorlac GR, Schreiber MA, Persse DE, Moore FA, Mattox KL. Mortality from isolated civilian penetrating injury. J Trauma. 2005;59(1):217–22.

    Article  CAS  PubMed  Google Scholar 

  5. Smith ER, Shapiro G, Sarani B. The profile of wounding in civilian public mass shooting fatalities. J Trauma Acute Care Surg. 2016;81(1):86–92.

    Article  PubMed  Google Scholar 

  6. van Oostendorp SE, Tan ECTH, Geeraedts LMG Jr. Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand J Trauma Resusc Emerg Med. 2016;24(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, del Junco DJ, Brasel KJ, Bulger EM, Callcut RA, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, Alarcon LH, Bai Y, Brasel KJ, Bulger EM, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–46.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, Cox ED, Gehrke MJ, Beilman GJ, Schreiber M, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.

    Article  PubMed  Google Scholar 

  10. Carmen R. The selection of plastic materials for blood bags. Transfus Med Rev. 1993;7(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Heddle NM, Klama LN, Griffith L, Roberts R, Shukla G, Kelton JG. A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion. 1993;33(10):794–7.

    Article  CAS  PubMed  Google Scholar 

  12. Blajchman MA. Bacterial contamination and proliferation during the storage of cellular blood products. Vox Sang. 1998;74(Suppl 2):155–9.

    Article  PubMed  Google Scholar 

  13. Seghatchian J, de Sousa G. Pathogen-reduction systems for blood components: the current position and future trends. Transfus Apher Sci. 2006;35(3):189–96.

    Article  PubMed  Google Scholar 

  14. Cap AP, Pidcoke HF, DePasquale M, Rappold JF, Glassberg E, Eliassen HS, Bjerkvig CK, Fosse TK, Kane S, Thompson P, et al. Blood far forward: time to get moving! J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S2–6.

    Article  PubMed  Google Scholar 

  15. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, Sebesta J, Jenkins D, Wade CE, Holcomb JB. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    PubMed  Google Scholar 

  16. Boscarino C, Tien H, Acker J, Callum J, Hansen AL, Engels P, Glassberg E, Nathens A, Beckett A. Feasibility and transport of packed red blood cells into special forces operational conditions. J Trauma Acute Care Surg. 2014;76(4):1013–9.

    Article  CAS  PubMed  Google Scholar 

  17. Spinella PC, Dunne J, Beilman GJ, O'Connell RJ, Borgman MA, Cap AP, Rentas F. Constant challenges and evolution of US military transfusion medicine and blood operations in combat. Transfusion. 2012;52(5):1146–53.

    PubMed  Google Scholar 

  18. Kauvar D, Holcomb JB, Norris GC, Hess JR. Fresh whole blood transfusion: a controversial military practice. J Trauma. 2006;61(1):181–4.

    Article  PubMed  Google Scholar 

  19. Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, Valdez-Delgado KK, Montgomery RK, Reddoch KM, Rodriguez AC, et al. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion. 2013;53(Suppl 1):137S–49S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noorman F, van Dongen TTCF, Plat M-CJ, Badloe JF, Hess JR, Hoencamp R. Transfusion: −80°C frozen blood products are safe and effective in military casualty care. PLoS One. 2016;11(12):e0168401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Acker JP, Marks DC, Sheffield WP. Quality assessment of established and emerging blood components for transfusion. J Blood Transfus. 2016;2016:4860284.

    PubMed  PubMed Central  Google Scholar 

  22. Blajchman MA. Substitutes for success. Nat Med. 1999;5:17–8.

    Article  CAS  PubMed  Google Scholar 

  23. Modery-Pawlowski CL, Tian LL, Pan V, McCrae KR, Mitragotri S, Sen Gupta A. Approaches to synthetic platelet analogs. Biomaterials. 2013;34(2):526–41.

    Article  CAS  PubMed  Google Scholar 

  24. Sen Gupta A. Biomaterials-based strategies for blood substitutes. In: Santambrogio L, editor. Biomaterials in regenerative medicine and the immune system: Springer, Switzerland; 2015. p. 113–37.

    Google Scholar 

  25. Giangrande PLF. The history of blood transfusion. Br J Haematol. 2000;110(4):758–67.

    Article  CAS  PubMed  Google Scholar 

  26. Hillyer CD, editor. Blood banking and transfusion medicine: Churchill Livingstone Elsevier, Philadelphia, USA; 2007.

    Google Scholar 

  27. Carson JL, Hill S, Carless P, Hébert P, Henry D. Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002;16(3):187–99.

    Article  PubMed  Google Scholar 

  28. Sharma S, Sharma P, Tyler LN. Transfusion of blood and blood products: indications and complications. Am Fam Physician. 2011;83(6):719–24.

    PubMed  Google Scholar 

  29. Whitaker B, Rajbhandary S, Kleinman S, Harris A, Kamani N. Trends in United States blood collection and transfusion: results from the 2013 AABB blood collection, utilization, and patient blood management survey. Transfusion. 2016;56(9):2173–83.

    Article  PubMed  Google Scholar 

  30. Goodnough LT, Brecher ME, Kanter MH, AuBuchon JP. Transfusion medicine — blood transfusion. N Engl J Med. 1999;340(6):438–47.

    Article  CAS  PubMed  Google Scholar 

  31. Hess JR. An update on solutions for red cell storage. Vox Sang. 2006;91(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  32. Greening DW, Glenister K, Sparrow RL, Simpson RJ. International blood collection and storage: clinical use of blood products. J Proteome. 2009;73(3):386–95.

    Article  CAS  Google Scholar 

  33. Tien H, Nascimento B Jr, Callum J, Rizoli S. An approach to transfusion and hemorrhage in trauma: current perspectives on restrictive transfusion strategies. Can J Surg. 2007;50(3):202–9.

    PubMed  PubMed Central  Google Scholar 

  34. Johansson PI, Ostrowski SR, Secher NH. Management of major blood loss: an update. Acta Anaesthesiol Scand. 2010;54(9):1039–49.

    Article  CAS  PubMed  Google Scholar 

  35. Pohlman TH, Walsh M, Aversa J, Hutchison EM, Olsen KP, Lawrence Reed R. Damage control resuscitation. Blood Rev. 2015;29(4):251–62.

    Article  PubMed  Google Scholar 

  36. Cannon JW, Khan MA, Raja AS, Cohen MJ, Como JJ, Cotton BA, Dubose JJ, Fox EE, Inaba K, Rodriguez CJ, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017;82(3):605–17.

    Article  PubMed  Google Scholar 

  37. Napolitano LM, Kurek S, Luchette FA, Corwin HL, Barie PS, Tisherman SA, Hebert PC, Anderson GL, Bard MR, Bromberg W, et al. American College of Critical Care Medicine of the Society of Critical Care Medicine; Eastern Association for the Surgery of Trauma Practice Management Workgroup: clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37(12):3124–57.

    Article  PubMed  Google Scholar 

  38. Holcomb JB, Donathan DP, Cotton BA, Del Junco DJ, Brown G, Wenckstern TV, Podbielski JM, Camp EA, Hobbs R, Bai Y, et al. Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care. 2015;19(1):1–9.

    Article  PubMed  Google Scholar 

  39. Brown JB, Sperry JL, Fombona A, Billiar TR, Peitzman AB, Guyette FX. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015;220(5):797–808.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith JW, Gilcher RO. Red blood cells, plasma, and other new apheresis-derived blood products: improving product quality and donor utilization. Transfus Med Rev. 1999;13(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  41. D’Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, Zolla L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205–19.

    Article  PubMed  CAS  Google Scholar 

  42. Devine DV, Serrano K. The platelet storage lesion. Clin Lab Med. 2010;30(2):475–87.

    Article  PubMed  Google Scholar 

  43. Jobes D, Wolfe Y, O’Neill D, Calder J, Jones L, Sesok-Pizzini D, Zheng XL. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  44. D’Amici GM, Mirasole C, D’Alessandro A, Yoshida T, Dumont LJ, Zolla L. Red blood cell storage in SAGM and AS3: a comparison through the membrane two-dimensional electrophoresis proteome. Blood Transfus. 2012;10(Suppl 2):s46–54.

    PubMed  PubMed Central  Google Scholar 

  45. Paglia G, D'Alessandro A, Rolfsson Ó, Sigurjónsson ÓE, Bordbar A, Palsson S, Nemkov T, Hansen KC, Gudmundsson S, Palsson BO. Biomarkers defining the metabolic age of red blood cells during cold storage. Blood. 2016;128:e43–50.

    Article  CAS  PubMed  Google Scholar 

  46. Chaudhari CN. Frozen red blood cells in transfusion. Med J Armed Forces India. 2009;65(1):55–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hess JR. Red cell freezing and its impact on supply chain. Transfus Med. 2004;14(1):1–8.

    Article  PubMed  Google Scholar 

  48. Solheim BG. Pathogen reduction of blood components. Transfus Apher Sci. 2008;39(1):75–82.

    Article  PubMed  Google Scholar 

  49. Chang R, Eastridge BJ, Holcomb JB. Remote damage control resuscitation in austere environments. Wilderness Environ Med. 2017;28(2S):S124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Squires JE. Artificial blood. Science. 2002;295(5557):1002–5.

    Article  CAS  PubMed  Google Scholar 

  51. Chang TMS. Blood substitutes based on nanobiotechnology. Trends Biotechnol. 2006;24:372–7.

    Article  CAS  PubMed  Google Scholar 

  52. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304–12.

    Article  CAS  PubMed  Google Scholar 

  53. Klotz IM. Hemoglobin-oxygen equilibria: retrospective and phenomenological perspective. Biophys Chem. 2003;100(1–3):123–9.

    CAS  PubMed  Google Scholar 

  54. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008;22(6):633–48.

    Article  CAS  PubMed  Google Scholar 

  55. Umbreit J. Methemoglobin—It's not just blue: a concise review. Am J Hematol. 2007;82(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  56. Dorman SC, Kenny CF, Miller L, Hirsch RE, Harrington JP. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components. Artif Cells Blood Substit Immobil Biotechnol. 2002;30(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  57. Stowell CP, Levin J, Spiess BD, Winslow RM. Progress in the development of RBC substitutes. Transfusion. 2001;41(2):287–99.

    Article  CAS  PubMed  Google Scholar 

  58. Winslow RM. Red cell substitutes. Semin Hematol. 2007;44(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  59. Chang TMS. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. Artif Cells Blood Substit Immobil Biotechnol. 2012;40(3):197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Napolitano LM. Hemoglobin-based oxygen carriers: first, second or third generation? Human or bovine? Where are we now? Crit Care Clin. 2009;25(2):279–301.

    Article  CAS  PubMed  Google Scholar 

  61. Piras AM, Dessy A, Chiellini F, Chiellini E, Farina C, Ramelli M, Valle ED. Polymeric nanoparticles for hemoglobin-based oxygen carriers. Biochim Biophys Acta. 2008;1784(10):1454–61.

    Article  CAS  PubMed  Google Scholar 

  62. Buehler PW, Alayash AI. All hemoglobin-based oxygen carriers are not created equally. Biochim Biophys Acta. 2008;1784(10):1378–81.

    Article  CAS  PubMed  Google Scholar 

  63. Winslow RM. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions. Biochim Biophys Acta. 2008;1784(10):1382–6.

    Article  CAS  PubMed  Google Scholar 

  64. Alayash AI. Setbacks in blood substitutes research and development: a biochemical perspective. Clin Lab Med. 2010;30(2):381–9.

    Article  PubMed  Google Scholar 

  65. Amberson WR, Jennings JJ, Rhode CM. Clinical experience with hemoglobin-saline solutions. J Appl Physiol. 1949;1(7):469–89.

    Article  CAS  PubMed  Google Scholar 

  66. Bunn H, Jandl J. The renal handling of hemoglobin. Trans Assoc Am Phys. 1968;81:147–52.

    CAS  PubMed  Google Scholar 

  67. Buehler PW, D’Agnillo F, Schaer DJ. Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med. 2010;16(10):447–57.

    Article  CAS  PubMed  Google Scholar 

  68. Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697–705.

    Article  CAS  PubMed  Google Scholar 

  69. Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, Miller-Roehrich J, Shoemaker S, Trimble S, Fermi G, et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992;356(6366):258–60.

    Article  CAS  PubMed  Google Scholar 

  70. Fronticelli C, Koehler RC, Brinigar WS. Recombinant hemoglobins as artificial oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(1):45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Varnado CL, Mollan TL, Birukou I, Smith BJZ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal. 2013;18(17):2314–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lamy ML, Daily EK, Brichant JF, Larbuisson RP, Demeyere RJ, Vandermeersch EA, Kehot JJ, Parsloe MR, Berridge JC, Sinclair CJ, et al. Randomized trial of Diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology. 2000;92:646–56.

    Article  CAS  PubMed  Google Scholar 

  73. Saxena R, Wijnhoud A, Carton H, Hacke W, Kaste M, Przybelski R, Stern KN, Koudstaal PJ. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke. 1999;30:993–6.

    Article  CAS  PubMed  Google Scholar 

  74. Sloan EP, Koenigsberg MD, Philbin NB, Gao W. DCLHb Traumatic Hemorrhagic Shock Study Group. European HOST investigators. Diaspirin cross-linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. J Trauma. 2010;68(5):1158–71.

    Article  PubMed  Google Scholar 

  75. Winslow RM. New transfusion strategies: red cell substitutes. Annu Rev Med. 1999;50:337–53.

    Article  CAS  PubMed  Google Scholar 

  76. Viele MK, Weisopf RB, Fisher D. Recombinant human hemoglobin does not affect renal function in humans: analysis of safety and pharmacokinetics. Anesthesiology. 1997;86(4):848–58.

    Article  CAS  PubMed  Google Scholar 

  77. Gould SA, Moore EE, Hoyt DB, Burch JM, Haenel JB, Garcia J, DeWoskin R, Moss GS. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg. 1998;187(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  78. Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation). Expert Opin Biol Ther. 2008;8(9):1425–33.

    Article  CAS  PubMed  Google Scholar 

  79. Cheng DC, Mazer CD, Martineau R, Ralph-Edwards A, Karski J, Robblee J, Finegan B, Hall RI, Latimer R, Vuylsteke A. A phase II dose-response study of hemoglobin raffimer (Hemolink) in elective coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2004;127(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  80. Alayash AI. Blood substitutes: why haven’t we been more successful? Trends Biotechnol. 2014;32(4):177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang TMS. Future generations of red blood cell substitutes. J Intern Med. 2003;253(5):527–35.

    Article  CAS  PubMed  Google Scholar 

  82. Chen J-Y, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics. 2009;64(8):803–13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vandegriff KD, Winslow RM. Hemospan: design principles for a new class of oxygen therapeutic. Artif Organs. 2009;33(2):133–8.

    Article  PubMed  Google Scholar 

  84. Bobofchak KM, Tarasov E, Olsen KW. Effect of cross-linker length on the stability of hemoglobin. Biochim Biophys Acta. 2008;1784(10):1410–4.

    Article  CAS  PubMed  Google Scholar 

  85. Caretti A, Fantacci M, Caccia D, Perrella M, Lowe KC, Samaja M. Modulation of the NO/cGMP pathway reduces the vasoconstriction induced by acellular and PEGylated haemoglobin. Biochim Biophys Acta. 2008;1784(10):1428–34.

    Article  CAS  PubMed  Google Scholar 

  86. Jahr JS, Akha AS, Holtby RJ. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products. Curr Drug Discov Technol. 2012;9(3):158–65.

    Article  CAS  PubMed  Google Scholar 

  87. Olofsson CAT, Johansson T, Larsson S, Nellgård P, Ponzer S, Fagrell B, Przybelski R, Keipert P, Winslow N, Winslow RM. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology. 2006;105(6):1153–63.

    Article  CAS  PubMed  Google Scholar 

  88. Buehler PW, Alayash AI. Toxicities of hemoglobin solutions: in search of in-vitro and in-vivo model systems. Transfusion. 2004;44(10):1516–30.

    Article  CAS  PubMed  Google Scholar 

  89. Alayash AI. Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov. 2004;3:152–9.

    Article  CAS  PubMed  Google Scholar 

  90. Roche CJ, Cassera MB, Dantsker D, Hirsch RE, Friedman JM. Generating S-Nitrosothiols from hemoglobin. Mechanisms, conformational dependence and physiological relevance. J Biol Chem. 2013;288(31):22408–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. D’Agnillo F, Chang TMS. Polyhemoglobin–superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nat Biotechnol. 1998;16(7):667–71.

    Article  PubMed  Google Scholar 

  92. Powanda D, Chang TMS. Cross-linked polyhemoglobin–superoxide dismutase–catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia–reperfusion. Artif Cells Blood Substit Immob Biotechnol. 2002;30(1):25–42.

    Google Scholar 

  93. Ogata Y, Goto H, Kimura T, Fukui H. Development of neo red cells (NRC) with the enzymatic reduction system of methemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1997;25(4):417–27.

    Article  CAS  PubMed  Google Scholar 

  94. Simoni J, Simoni G, Moeller JF, Feola M, Wesson DE. Artificial oxygen carrier with pharmacologic actions of adenosine-5′-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions. Artif Organs. 2014;38(8):684–90.

    Article  CAS  PubMed  Google Scholar 

  95. Simoni J, Simoni G, Wesson DE, Feola M. ATP-adenosine-glutathione cross-linked hemoglobin as clinically useful oxygen carrier. Curr Drug Discov Technol. 2012;9(3):173–87.

    Article  CAS  PubMed  Google Scholar 

  96. Wollocko H, Anvery S, Wollocko J, Harrington JM, Harrington JP. Zero-link polymerized hemoglobin (OxyVita®Hb) stabilizes the heme environment: potential for lowering vascular oxidative stress. Artif Cells Nanomed Biotechnol. 2017;45(4):701–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ma L, Thompson FM, Wang D, Hsia CJC. Polynitroxylated PEGylated Hemoglobin (PNPH): a nanomedicine for critical care and transfusion, chapter 16. In: Kim HW, Greenberg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Berlin: Springer-Verlag; 2013. p. 299–313.

    Chapter  Google Scholar 

  98. Chang TMS. Hemoglobin corpuscles’ report of a research project for Honours Physiology, Medical Library, McGill University 1957. Reprinted as part of ‘30 anniversary in Artificial Red Blood Cells Research’. J Biomat Artif Cells Artif Organs. 1988;16:1–9.

    Article  CAS  Google Scholar 

  99. Chang TMS, Poznansky MJ. Semipermeable microcapsules containing catalase for enzyme replacement in acatalsaemic mice. Nature. 1968;218(5138):242–5.

    Article  Google Scholar 

  100. Chang TMS. Semipermeable microcapsules. Science. 1964;146(3643):524–5.

    Article  CAS  PubMed  Google Scholar 

  101. Djordjevich L, Miller IF. Synthetic erythrocytes from lipid encapsulated hemoglobin. Exp Hematol. 1980;8(5):584.

    CAS  PubMed  Google Scholar 

  102. Hunt CA, Burnette RR, MacGregor RD, Strubbe A, Lau D, Taylor N. Synthesis and evaluation of a prototypal artificial red cell. Science. 1985;230(4730):1165–8.

    Article  CAS  PubMed  Google Scholar 

  103. Rudolph AS, Klipper RW, Goins B, Phillips WT. In vivo biodistribution of a radiolabeled blood substitute: 99mTc-labeled liposome-encapsulated hemoglobin in an anesthetized rabbit. Proc Natl Acad Sci U S A. 1991;88(23):10976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs. 2009;33(2):139–45.

    Article  PubMed  Google Scholar 

  105. Pape A, Kertscho H, Meier J, Horn O, Laout M, Steche M, Lossen M, Theissen A, Zwissler B, Habler O. Improved short-term survival with polyethylene glycol modified hemoglobin liposomes in critical normovolemic anemia. Intensive Care Med. 2008;34(8):1534–43.

    Article  CAS  PubMed  Google Scholar 

  106. Kawaguchi AT, Fukumoto D, Haida M, Ogata Y, Yamano M, Tsukada H. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery. Stroke. 2007;38(5):1626–32.

    Article  CAS  PubMed  Google Scholar 

  107. Agashe H, Awasthi V. Current perspectives in liposome-encapsulated hemoglobin as oxygen carrier. Adv Plan Lipid Bilayers Liposomes. 2009;9:1–28.

    Article  CAS  Google Scholar 

  108. Ceh B, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD. Stealth® liposomes: from theory to product. Adv Drug Delivery Rev. 1997;24(2–3):165–77.

    CAS  Google Scholar 

  109. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Philips WT, Klpper RW, Awasthi VD, Rudolph AS, Cliff R, Kwasiborski V, Goines VA. Polyethylene glycol modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. J Pharm Exp Ther. 1999;288(2):665–70.

    Google Scholar 

  111. Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Hemoglobin-vesicle, a cellular artificial oxygen carrier that fulfills the physiological roles of the red blood cell structure. Adv Exp Med Biol. 2010;662:433–8.

    Article  CAS  PubMed  Google Scholar 

  112. Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem. 2009;20(8):1419–40.

    Article  CAS  PubMed  Google Scholar 

  113. Taguchi K, Urata Y, Anraku M, Watanabe H, Kadowaki D, Sakai H, Horinouchi H, Kobayashi K, Tsuchida E, Maruyama T, et al. Hemoglobin vesicles, Polyethylene Glycol (PEG)ylated liposomes developed as a Red Blood Cell Substitute, do not induce the accelerated blood clearance phenomenon in mice. Drug Metab Dispos. 2009;37(11):2197–203.

    Article  CAS  PubMed  Google Scholar 

  114. Kaneda S, Ishizuka T, Goto H, Kimura T, Inaba K, Kasukawa H. Liposome-encapsulated Hemoglobin, TRM-645: current status of the development and important issues for clinical application. Artif Organs. 2009;33(2):146–52.

    Article  CAS  PubMed  Google Scholar 

  115. Tao Z, Ghoroghchian PP. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol. 2014;32(9):466–73.

    Article  CAS  PubMed  Google Scholar 

  116. Sakai H. Present situation of the development of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles). Curr Drug Discov Technol. 2012;9(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  117. Yadav VR, Nag O, Awasthi V. Biological evaluation of Liposome-encapsulated Hemoglobin surface-modified with a novel PEGylated nonphospholipid amphiphile. Artif Organs. 2014;38(8):625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yadav VR, Rao G, Houson H, Hedrick A, Awasthi S, Roberts PR, Awasthi V. Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock. Eur J Pharm Sci. 2016;93:97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kheir JN, Scharp LA, Borden MA, Swanson EJ, Loxley A, Reese JH, Black KJ, Velazquez LA, Thomson LM, Walsh BK, et al. Oxygen gas–filled microparticles provide intravenous oxygen delivery. Sci Transl Med. 2012;4(140):140–88.

    Article  CAS  Google Scholar 

  120. Kheir JN, Polizzotti BD, Thomson LM, O’Connell DW, Black KJ, Lee RW, Wilking JN, Graham AC, Bell DC, McGowan FX. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery. Adv Healthc Mater. 2013;2(8):1131–41.

    Article  CAS  PubMed  Google Scholar 

  121. Yu WP, Chang TMS. Submicron polymer membrane hemoglobin nanocapsules as potential blood substitutes: preparation and characterization. Artif Cells Blood Substit Immobil Biotechnol. 1996;24(3):169–84.

    Article  CAS  PubMed  Google Scholar 

  122. Chang TMS, Yu WP. Nanoencapsulation of hemoglobin and RBC enzymes based on nanotechnology and biodegradable polymer. In: TMS C, editor. Blood substitutes: principles, methods, products and clinical trials, vol. 2. Basel: Karger; 1998. p. 216–31.

    Google Scholar 

  123. Chang TMS. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjug Chem. 2008;19(5):1025–32.

    Article  CAS  PubMed  Google Scholar 

  125. Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med. 2009;20(9):1881–91.

    Article  CAS  PubMed  Google Scholar 

  126. Arifin DR, Palmer AF. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromolecules. 2005;6(4):2172–81.

    Article  CAS  PubMed  Google Scholar 

  127. Rameez S, Bamba I, Palmer AF. Large scale production of vesicles by hollow fiber extrusion: a novel method for generating polymersome encapsulated hemoglobin dispersions. Langmuir. 2010;26(7):5279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Misra H, Lickliter J, Kazo F, Abuchowski A. PEGylated Carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial. Artif Organs. 2014;38(8):702–7.

    Article  CAS  PubMed  Google Scholar 

  129. Ananthakrishnan R, Li Q, O’Shea KM, Quadri N, Wang L, Abuchowski A, Schmidt AM, Ramasamy R. Carbon monoxide form of PEGylated hemoglobin protects myocardium against ischemia/reperfusion injury in diabetic and normal mice. Artif Cells Nanomed Biotechnol. 2013;41(6):428–36.

    Article  CAS  PubMed  Google Scholar 

  130. Abuchowski A. SANGUINATE (PEGylated Carboxyhemoglobin bovine): mechanism of action and clinical update. Artif Organs. 2017;41(4):346–50.

    Article  PubMed  Google Scholar 

  131. Wu L. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57(4):585–630.

    Article  CAS  PubMed  Google Scholar 

  132. Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Ludwig K, Böttcher C, Komatsu T. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules. 2013;14(6):1816–25.

    Article  CAS  PubMed  Google Scholar 

  133. Hosaka H, Haruki R, Yamada K, Böttcher C, Komatsu T. Hemoglobin-albumin cluster incorporating a Pt nanoparticle: artificial O2 carrier with antioxidant activities. PLoS One. 2014;9(10):e110541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Duan L, Yan X, Wang A, Jia Y, Li J. Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano. 2012;6(8):6897–904.

    Article  CAS  PubMed  Google Scholar 

  135. Xiong Y, Liu ZZ, Georgieva R, Smuda K, Steffen A, Sendeski M, Voigt A, Patzak A, Bäumler H. Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano. 2013;7(9):7454–61.

    Article  CAS  PubMed  Google Scholar 

  136. Li B, Li T, Chen G, Li X, Yan L, Xie Z, Jing X, Huang Y. Regulation of conjugated hemoglobin on micelles through copolymer chain sequences and the protein’s isoelectric aggregation. Macromol Biosci. 2013;13(7):893–902.

    Article  CAS  PubMed  Google Scholar 

  137. Qi Y, Li T, Wang Y, Wei X, Li B, Chen X, Xie Z, Jing X, Huang Y. Synthesis of hemoglobin-conjugated polymer micelles by thiol Michael-addition reactions. Macromol Biosci. 2016;16(6):906–13.

    Article  CAS  PubMed  Google Scholar 

  138. Jia Y, Cui Y, Fei J, Du M, Dai L, Li J, Yang Y. Construction and evaluation of hemoglobin-based capsules as blood substitutes. Adv Funct Mater. 2012;22(7):1446–53.

    Article  CAS  Google Scholar 

  139. Chen B, Jia Y, Zhao J, Li H, Dong W, Li J. Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C. 2013;117(38):19751–8.

    Article  CAS  Google Scholar 

  140. Le Gall T, Polard V, Rousselot M, Lotte A, Raouane M, Lehn P, Opolon P, Leize E, Deutsch E, Zal F, et al. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier. J Biotechnol. 2014;187:1–9.

    Article  PubMed  CAS  Google Scholar 

  141. Tsai AG, Intaglietta M, Sakai H, Delpy E, La Rochelle CD, Rousselot M, Zal F. Microcirculation and NO-CO studies of a natural extracellular hemoglobin developed for an oxygen therapeutic carrier. Curr Drug Discov Technol. 2012;9(3):166–72.

    Article  CAS  PubMed  Google Scholar 

  142. Wang X, Gao W, Peng W, Xie J, Li Y. Biorheological properties of reconstructed erythrocytes and its function of carrying-releasing oxygen. Artif Cells Blood Substit Immobil Biotechnol. 2009;37(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  143. Goldsmith HL, Marlow J. Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc R Soc Lond B. 1972;182(1068):351–84.

    Article  Google Scholar 

  144. Charoenphol P, Mocherla S, Bouis D, Namdee K, Pinsky DJ, Eniola-Adefeso O. Targeting therapeutics to the vascular wall in atherosclerosis--carrier size matters. Atherosclerosis. 2011;217(2):364–70.

    Article  CAS  PubMed  Google Scholar 

  145. Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A. 2009;106(51):21495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Haghgooie R, Toner M, Doyle PS. Squishy non-spherical hydrogel microparticles. Macromol Rapid Commun. 2010;31(2):128–34.

    CAS  PubMed  Google Scholar 

  147. Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu H, Zamboni WC, Wang AZ, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A. 2011;108(2):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li S, Nickels J, Palmer AF. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials. 2005;26(17):3759–69.

    Article  CAS  PubMed  Google Scholar 

  149. Xu F, Yuan Y, Shan X, Liu C, Tao X, Sheng Y, Zhou H. Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm. 2009;377(1–2):199–206.

    Article  CAS  PubMed  Google Scholar 

  150. Pan D, Rogers S, Misra S, Vulugundam G, Gazdzinski L, Tsui A, Mistry N, Said A, Spinella P, Hare G, Lanza G, Doctor A. ErythroMer (EM): nanoscale bio-synthetic artificial red cell proof of concept and in vivo efficacy results. Blood. 2016;128(22):A1027.

    Google Scholar 

  151. Weiskopf RB, Beliaev AM, Shander A, Guinn NR, Cap AP, Ness PM, Silverman TA. Addressing the unmet need of life-threatening anemia with hemoglobin-based oxygen carriers. Transfusion. 2017;57(1):207–14.

    Article  CAS  PubMed  Google Scholar 

  152. Muir WW, Wellman ML. Hemoglobin solutions and tissue oxygenation. J Vet Intern Med. 2003;17(2):127–35.

    Article  PubMed  Google Scholar 

  153. Sakai H, Masada Y, Takeoka S, Tsuchida E. Characteristics of bovine hemoglobin as a potential source of hemoglobin-vesicles for an artificial oxygen carrier. J Biochem. 2002;131(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  154. Chan LW, White NJ, Pun SH. Synthetic strategies for engineering intravenous hemostat. Bioconjug Chem. 2015;26(7):1224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lashoff-Sullivan M, Shoffstall A, Lavik E. Intravenous hemostats: challenges in translation to patients. Nanoscale. 2013;5(22):10719–28.

    Article  CAS  Google Scholar 

  156. Booth C, Highley D. Crystalloids, colloids, blood, blood products and blood substitutes. Anaesth Intensive Care Med. 2010;11(2):50–5.

    Article  Google Scholar 

  157. McCahon R, Hardman J. Pharmacology of plasma expanders. Anaesth Intensive Care Med. 2007;8(2):79–81.

    Article  Google Scholar 

  158. Hickman DA, Pawlowski CL, Sekhon UDS, Marks J, Sen Gupta A. Biomaterials an advanced technologies for hemostatic management of bleeding. Adv Mater. 2018;30(4) https://doi.org/10.1002/adma.201700859.

    Article  CAS  Google Scholar 

  159. Douay L, Andreu G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion? Transfus Med Rev. 2007;21(2):91–100.

    Article  PubMed  Google Scholar 

  160. Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J. 2014;9(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  161. Avanzi MP, Mitchell WB. Ex vivo production of platelets from stem cells. Br J Haematol. 2014;165(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  162. Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–48.

    Article  CAS  PubMed  Google Scholar 

  163. Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, Feng Q, Lu S, Lanza R, Neeves KB, et al. Platelet bioreactor-on-a-chip. Blood. 2014;124(12):1857–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Spitalnik SL, Triulzi D, Devine DV, Dzik WH, Eder AF, Gernsheimer T, Josephson CD, Kor DJ, Luban NL, Roubinian NH, et al. State of the science in Transfusion Medicine Working Groups. Transfusion. 2015;55(9):2282–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Sen Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen Gupta, A., Doctor, A. (2020). Oxygen Carriers. In: Spinella, P. (eds) Damage Control Resuscitation. Springer, Cham. https://doi.org/10.1007/978-3-030-20820-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20820-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20819-6

  • Online ISBN: 978-3-030-20820-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics