Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

This chapter intensively deals with offset-strip fins for plate-fin heat exchangers and plate-fin and tube heat exchangers. The performance of offset-strip fins and offset-strip fin arrays has been discussed. Various numerical studies and correlations for j-factor and f-factor have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergles AE (1985) Chapter 3–Techniques to augment heat transfer. In: Handbook of heat transfer applications, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Bhowmik H, Lee KS (2009) Analysis of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger. Int Commun Heat Mass Transfer 36(3):259–263

    Article  Google Scholar 

  • Churchill SW, Usagi R (1972) A general expression for the correlation of rates of transfer and other phenomena. AICHE J 18(6):1121–1128

    Article  Google Scholar 

  • Colgan EG, Furman B, Gaynes M, Graham WS, LaBianca NC, Magerlein JH, Marston KC (2007) A practical implementation of silicon microchannel coolers for high power chips. IEEE Trans Compon Packag Technol 30(2):218–225

    Article  Google Scholar 

  • DeJong NC, Jacobi AM (1997) An experimental study of flow and heat transfer in parallel-plate arrays: local, row-by-row and surface average behaviour. Int J Heat Mass Transfer 40:1365–1378

    Article  Google Scholar 

  • Dubrovsky EV, Vasiliev VY (1988) Enhancement of convective heat transfer in rectangular ducts of interrupted surfaces. Int J Heat Mass Transfer 31(4):807–818

    Article  Google Scholar 

  • Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26(16):1820–1829

    Article  Google Scholar 

  • Hatada T, Senshu T (1984) Experimental study on heat transfer characteristics of convex louver fins for air conditioning heat exchangers. ASME paper 84-HT-74, New York

    Google Scholar 

  • Hong F, Cheng P (2009) Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks. Int Coummun Heat Mass Transfer 36(7):651–656

    Article  Google Scholar 

  • Hu S, Herold KE (1995) Prandtl number effect on offset fin heat exchanger performance: predictive model for heat transfer and pressure drop. Int J Heat Mass Transfer 38(6):1043–1051

    Article  MATH  Google Scholar 

  • Ismail LS, Velraj R (2009) Studies on Fanning friction (f) and Colburn (j) factors of offset and wavy fins compact plate fin heat exchanger-a CFD approach. Numer Heat Trans Part A Appl 56(12):987–1005

    Article  Google Scholar 

  • Ismail LS, Ranganayakulu C, Shah RK (2009) Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins. Int J Heat Mass Transfer 52(17):3972–3983

    Article  Google Scholar 

  • Joshi HM, Webb RL (1987) Heat transfer and friction in the offset strip fin heat exchanger. Int J Heat Mass Transfer 30(1):69–84

    Article  Google Scholar 

  • Kalinin EK, Dreitser GA, Kopp IZ, Myakochin AS (1998) Effektivnye poverkhnosti teploobmena (Effective Heat Transfer Surfaces), Moscow: Energoatomizdat

    Google Scholar 

  • Kandlikar SG, Upadhye HR (2005) Extending the heat flux limit with enhanced microchannels in direct single-phase cooling of computer chips. In: Semiconductor thermal measurement and management IEEE twenty first annual IEEE symposium IEEE, pp 8–15

    Google Scholar 

  • Kays WM (1972) Compact heat exchangers, AGARD lecture series on heat exchangers. 57 JJ Ginoux Ed, AGARD-LS-57-72

    Google Scholar 

  • Kays WM, Crawford ME (1993) Convective heat and mass transfer. McGraw-Hill, New York

    Google Scholar 

  • Kays WM, London AL (1984) Compact heat exchangers. McGraw-Hill, New York

    Google Scholar 

  • Kim MS, Lee J, Yook SJ, Lee KS (2011) Correlations and optimization of a heat exchanger with offset-strip fins. Int J Heat Mass Transfer 54(9):2073–2079

    Article  MATH  Google Scholar 

  • KoÅŸar A, Peles Y (2006) Thermal-hydraulic performance of MEMS-based pin fin heat sink. J Heat Transfer 128(2):121–131

    Article  Google Scholar 

  • KoÅŸar A, Mishra C, Peles Y (2005) Laminar flow across a bank of low aspect ratio micro pin fins. J Fluid Eng 127(3):419–430

    Article  Google Scholar 

  • Kurosaki Y, Kashiwagi T, Kobayashi H, Uzuhashi H, Tang SC (1988) Experimental study on heat transfer from parallel louvered fins by laser holographic interferometry. Exp Therm Fluid Sci 1(1):59–67

    Article  Google Scholar 

  • Lalot S, Florent P, Lang SK, Bergles AE (1999) Flow maldistribution in heat exchangers. Int J Appl Therm Eng 19:847–863

    Article  Google Scholar 

  • London AL, Shah RK (1968) Offset rectangular plate-fin surfaces—heat transfer and flow friction characteristics. J Eng Power 90(3):218–228

    Google Scholar 

  • Lu CW, Huang JM, Nien WC, Wang CC (2011) A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger. Energy Convers Manag 52(3):1638–1643

    Article  Google Scholar 

  • Manglik RM, Bergles AE (1990) The thermal-hydraulic design of the rectangular offset strip-fin compact heat exchanger. In: Shah RK, Kraus AD, Metzger D (eds) Compact heat exchangers. Hemisphere, Washington, DC, pp 123–150

    Google Scholar 

  • Manglik RM, Bergles AE (1995) Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger. Exp Therm Fluid Sci 10(2):171–180

    Article  Google Scholar 

  • Manson SV (1950) Correlations of heat transfer data and of friction data for interrupted plane fins staggered in successive rows, NACA technical note, page no. 2234–2237

    Google Scholar 

  • Maiti DK (2002) Heat transfer and flow friction characteristics of plate-fin heat exchanger surfaces – a numerical study, PhD thesis, IIT Kharagpur, India

    Google Scholar 

  • Milne-Thomson LM (1960) Theoretical hydrodynamics, 4th edn. Macmillan, New York, p 319

    MATH  Google Scholar 

  • Mochizuki S, Yagi S (1975) Heat transfer and friction characteristics of strip fins. Int J Refrig 50:36–59

    Google Scholar 

  • Mochizuki S, Yagi Y, Yang WJ (1987) Transport phenomena in stacks of interrupted parallel-plate surfaces. Int J Exper Heat Transfer 1(2):127–140

    Article  Google Scholar 

  • Muzychka YS, Yovanovich M (1998a) Modeling friction factors in non-circular ducts for developing laminar flow. In: Second AIAA theoretical fluid mechanics meeting, p 2492

    Google Scholar 

  • Muzychka YS, Yovanovich M (1998b) Modeling Nusselt numbers for thermally developing laminar flow in non-circular ducts. In: Seventh AIAA/ASME joint thermophysics and heat transfer conference, p 2586

    Google Scholar 

  • Muzychka YS (1999) Analytical and experimental study of fluid friction and heat transfer in low Reynolds number flow heat exchangers, PhD thesis, University of Waterloo, Waterloo, ON

    Google Scholar 

  • Muzychka YS, Yovanovich MM (2001a) Modeling the f and j characteristics for transverse flow through an offset strip fin at low Reynolds number. J Enhanc Heat Transf 8(4):243–259

    Article  Google Scholar 

  • Muzychka YS, Yovanovich MM (2001b) Modeling the f and j characteristics of the offset strip fin array. J Enhanc Heat Transf 8(4):261–277

    Article  Google Scholar 

  • Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31(10):1839–1847

    Article  Google Scholar 

  • Patankar SV (1990) Numerical prediction of flow and heat transfer in compact heat exchanger passages. In: Shah RK, Kraus AD, Metzger D (eds) Compact heat exchangers. Hemisphere, Washington, DC, pp 191–204

    Google Scholar 

  • Patankar SV, Liu CH, Sparrow EM (1977) Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J Heat Transfer 99(2):180–186

    Article  Google Scholar 

  • Peles Y, KoÅŸar A, Mishra C, Kuo CJ, Schneider B (2005) Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transfer 48(17):3615–3627

    Article  MATH  Google Scholar 

  • Ranganayakulu C, Seetharamu KN (1999) The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers. Int J Commun Heat Mass Transfer 26:669–678

    Article  MATH  Google Scholar 

  • Ranganayakulu C, Seetharamu KN, Sreevatsan KV (1997) The effects of inlet fluid flow nonuniformity on thermal performance and pressure drops in crossflow plate-fin heat exchangers. Int J Heat Mass Transfer 40(1):27–38

    Article  MATH  Google Scholar 

  • Ranganayakulu Ch, Sheik Ismail L, Vengudupathi C (2006) Uncertainties inestimation of Colburn (j) factor and fanning friction (f) factor for offset stripfin and wavy fin compact heat exchanger surfaces. In: Mishra SC, Prasad BVSSS, Garimella SV (eds) Proceedings of the XVIII national and VII ISHMT –ASME heat and mass transfer conference, Guwahati, India, pp 1096–1103

    Google Scholar 

  • Sanaye S, Hajabdollahi H (2010) Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl Energy 87(6):1893–1902

    Article  Google Scholar 

  • Shah RK, Bhatti MS (1987) Handbook of single-phase convective heat transfer. Wiley, New York

    Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. Academic Press, New York

    Google Scholar 

  • Shah RK, Sekulic DP (2003) Fundamentals of heat exchanger design. John Wiley & Sons, New York

    Book  Google Scholar 

  • Shapiro AH, Siegel R, Kline SJ (1954) Friction factor in the Lamianar entry region of a smooth tube. Proceedings of the 2nd U.S. National Congress of applied mechanics, pp 733–741

    Google Scholar 

  • Siu-Ho A, Qu W, Pfefferkorn F (2007) Experimental study of pressure drop and heat transfer in a single-phase micropin-fin heat sink. J Electron Packag 129(4):479–487

    Article  Google Scholar 

  • Song R, Cui M, Liu J (2017) A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. Int J Heat Mass Transfer 115:695–705

    Article  Google Scholar 

  • Sparrow EM, Liu CH (1979) Heat transfer, pressure drop and performance relationships for inline, staggered, and continuous plate heat exchangers. Int J Heat Mass Transfer 22:1613–1625

    Article  Google Scholar 

  • Tinaut FV, Melgar A, Ali AR (1992) Correlations for heat transfer and flow friction characteristics of compact plate-type heat exchangers. Int J Heat Mass Transfer 35(7):1659–1665

    Article  Google Scholar 

  • Usami H (1991) Pressure drop characteristics of OSF surfaces. In: Lloyd JR, Kurosake Y (eds) Proc 1991 ASME IJSME joint thermal engineering conference, vol 4. ASME, New York, pp 425–432

    Google Scholar 

  • Wang YQ, Dong QW, Liu MS, Wang D (2009) Numerical study on plate-fin heat exchangers with plain fins and serrated fins at low Reynolds number. Chem Eng Technol 32(8):1219–1226

    Article  Google Scholar 

  • Webb RL (1987) Chapter 17–Enhancement of single-phase heat transfer. In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase heat transfer. Wiley, New York, pp 17.1–17.62

    Google Scholar 

  • Webb RL, Joshi HM (1982) A friction factor correlation for the offset strip-fin matrix. Heat Trans 1982, vol 6. Hemisphere Publishing Company, pp 257–262

    Google Scholar 

  • Webb RL, Joshi HM (1983) Prediction of the friction factor for the offset strip-fin matrix. In: ASME-JSME thermal eng joint conf, vol 1. ASME, New York, pp 461–470

    Google Scholar 

  • Webb RL (1994) The flow structure in the louvered fin heat exchanger geometry. In: Alkidas AC (ed) Vehicle thermal management. SAE, pp 221–232

    Google Scholar 

  • Wen J, Li YM, Wang SM, Li YZ, Wu CL (2012) Fluid flow and heat transfer characteristics in plain fins of plate-fin heat exchanger. Chem Eng (China) 40(10):25–28. (in Chinese)

    Google Scholar 

  • Wen J, Yanzhong L, Zhou A, Zhang K (2006) An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger. Int J Heat Mass Transf 49:1667–1678

    Article  Google Scholar 

  • Wieting AR (1975) Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. J Heat Transfer 97(3):488–490

    Article  Google Scholar 

  • Xu S, Zhu HM, Yu R (2015) Numerical study on plate-fin heat exchangers with plain fin. Comput Appl Chem 32(8):977–981. (in Chinese)

    Google Scholar 

  • Zhang J, Muley A, Borghess JB, Manglik RM (2003) Computational and experimental study of enhanced laminar flow heat transfer in three dimensional sinusoidal wavy-plate-fin channels, Proc of the 2003 ASME summer heat trans conf, Nevada, USA, HT2003–47148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Offset-Strip Fins. In: Heat Transfer Enhancement in Plate and Fin Extended Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20736-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20736-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20738-0

  • Online ISBN: 978-3-030-20736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics