Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 593))

  • 905 Accesses

Abstract

This chapter introduces the reader to lubrication theory and describes the governing equations, models and methods that can be used to simulate various types of lubricated systems. It starts with an introduction to the tribological contact and to the different lubrication regimes. The basis for the classical lubrication theory is then given and thereafter follows a presentation of how to obtain the Reynolds equation by means of scaling and asymptotic analysis of the Navier–Stokes equations. After having obtained the Reynolds equation, a quite elaborate presentation of cavitation algorithms is given. It includes discretisation and presents the analytical solution for a pocket bearing as a benchmark model problem. Then, the concept of homogenisation of surface roughness is introduced. This starts from the simplest iso-viscous and incompressible case, expands to include compressibility with a constant bulk modulus constitutive relation and then also addresses the case of ideal gases. Thereafter, the relation between homogenised coefficients and the Patir and Cheng flow factors is described and finally it is shown how to incorporate the effect of mixed lubrication into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S., Goodyer, C. E., & Jimack, P. K. (2012). An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems. Applied Numerical Mathematics, 62(5), 649–663. https://doi.org/10.1016/j.apnum.2012.02.002.

    Article  MathSciNet  MATH  Google Scholar 

  • Almqvist, A. (2011). Homogenization of the Reynolds equation governing hydrodynamic flow in a rotating device. Journal of Tribology, 133(2), 021705. https://doi.org/10.1115/1.4003650.

    Article  Google Scholar 

  • Almqvist, A., & Dasht, J. (2006). The homogenization process of the Reynolds equation describing compressible liquid flow. Tribology International, 39(9), 994–1002. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2005.09.036.

    Article  Google Scholar 

  • Almqvist, A., & Wall, P. (2016). Modelling cavitation in (elasto)hydrodynamic lubrication. In P. H. Darji (Eds.), Advances in tribology. Rijeka: IntechOpen. https://doi.org/10.5772/63533.

    Google Scholar 

  • Almqvist, A., Essel, E. K., Persson, L. E., & Wall, P. (2007a). Homogenization of the unstationary incompressible Reynolds equation. Tribology International, 40(9), 1344–1350. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2007.02.021.

    Article  Google Scholar 

  • Almqvist, A., Sahlin, F., Larsson, R., & Glavatskih, S. (2007b). On the dry elasto-plastic contact of nominally flat surfaces. Tribology International, 40(4), 574–579. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2005.11.008.

    Article  Google Scholar 

  • Almqvist, A., Fabricius, J., Spencer, A., & Wall, P. (2011). Similarities and differences between the flow factor method by patir and cheng and homogenization. Journal of Tribology, 133(3), 031702. https://doi.org/10.1115/1.4004078.

    Article  Google Scholar 

  • Almqvist, A., Fabricius, J., & Wall, P. (2012). Homogenization of a Reynolds equation describing compressible flow. Journal of Mathematical Analysis and Applications, 390(2), 456–471. ISSN 0022-247X. https://doi.org/10.1016/j.jmaa.2012.02.005.

    Article  MathSciNet  MATH  Google Scholar 

  • Almqvist, A., Spencer, A., & Wall, P. (2013). Matlab routines solving a linear complementarity problem appearing in lubrication with cavitation. http://www.mathworks.com/matlabcentral/fileexchange/41484.

  • Almqvist, A., Fabricius, J., Larsson, R., & Wall, P. (2014). A new approach for studying cavitation in lubrication. Journal of Tribology, 136(1), 011706-1–011706-6. https://doi.org/10.1115/1.4025875.

    Article  Google Scholar 

  • Ausas, R. F., Jai, M., & Buscaglia, G. C. (2009). A mass-conserving algorithm for dynamical lubrication problems with cavitation. Journal of Tribology, 131(3):031702. https://doi.org/10.1115/1.3142903.

    Article  Google Scholar 

  • Bayada, G., & Chambat, M. (1988). New models in the theory of the hydrodynamic lubrication of rough surfaces. Journal of Tribology, Transactions of the ASME, 110(3), 402–407. ISSN 0742-4787.

    Google Scholar 

  • Bayada, G., Martin, S., & Vázquez, C. (2005a). An average flow model of the Reynolds roughness including a mass-flow preserving cavitation model. Journal of Tribology, 127(4), 793–802. https://doi.org/10.1115/1.2005307.

    Article  Google Scholar 

  • Bayada, G., Martin, S., & Vazquez, C. (2005b). Two-scale homogenization of a hydrodynamic Elrod-Adams model. Asymptotic Analysis, 44, 75–110.

    MathSciNet  MATH  Google Scholar 

  • Bayada, G., Cid, B., García, G., & Vázquez, C. (2013). A new more consistent Reynolds model for piezoviscous hydrodynamic lubrication problems in line contact devices. Applied Mathematical Modelling, 37(18–19), 8505–8517. https://doi.org/10.1016/j.apm.2013.03.072.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertocchi, L., Dini, D., Giacopini, M., Fowell, M. T., & Baldini, A. (2013). Fluid film lubrication in the presence of cavitation: A mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluidsbaya. Tribology International, 67, 61–71. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2013.05.018.

    Article  Google Scholar 

  • Bolander, N. W., Steenwyk, B. D., Sadeghi, F., & Gerber, G. R. (2005). Lubrication regime transitions at the piston ring-cylinder liner interface. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(1), 19–31. https://doi.org/10.1243/135065005X9664.

    Article  Google Scholar 

  • Boukrouche, M., & Bayada, G. (1993). Mathematical model. Existence and uniqueness of cavitation problems in porous journal bearing. Nonlinear Analysis: Theory, Methods & Applications, 20(8), 895–920. https://doi.org/10.1016/0362-546X(93)90084-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Buresti, G. (2015). A note on stokes’ hypothesis. Acta Mechanica, 226(10), 3555–3559. ISSN 1619-6937. https://doi.org/10.1007/s00707-015-1380-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Cottle, R. W., Pang, J. S., & Stone, R. E. (2009). The linear complementarity problem. Report No. 60. Philadelphia, PA: SIAM.

    Google Scholar 

  • Dowson, D., & Higginson, G. R. (1966). Elasto-hydrodynamic lubrication: The fundamentals of roller or gear lubrication. Oxford: Pergamon Press.

    Google Scholar 

  • Elrod, H. G. (1981). A cavitation algorithm. Journal of Tribology, 103, 350–354.

    Google Scholar 

  • Elrod, H. G., & Adams, M. L. (1975). A computer program for cavitation and starvation problems. In D. Dowson, M. Godet, & C. M. Taylor (Eds.), Cavitation and related phenomena in lubrication (pp. 37–43). London: Mechanical Engineering Publications.

    Google Scholar 

  • Evans, H. P., Elcoate, C. D., Hughes, T. G., & Snidle, R. W. (2001). Transient elastohydrodynamic analysis of rough surfaces using a novel coupled differential deflection method. Proceedings of the Institution of Mechanical Engineers Part J, 215, 319–337.

    Article  Google Scholar 

  • Evans, L. C. (2010). Graduate studies in mathematics providence. In Partial differential equations (2nd ed., Vol. 19). Rhode Island: American Mathematical Society.

    Google Scholar 

  • Fabricius, J., Koroleva, Y. O., & Wall, P. (2014). A rigorous derivation of the time-dependent reynolds equation. Asymptotic Analysis, 84, 103–121.

    MathSciNet  MATH  Google Scholar 

  • Floberg, L. (1960). The two-groove journal bearing, considering cavitation. Technical Report 231, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Floberg, L. (1961). Lubrication of two cylinder surfaces, considering cavitation. Technical Report 232, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Fowell, M., Olver, A. V., Gosman, A. D., Spikes, H. A., & Pegg, I. (2007). Entrainment and inlet suction: Two mechanisms of hydrodynamic lubrication in textured bearings. Journal of Tribology, 129(2), 336–347. https://doi.org/10.1115/1.2540089.

    Article  Google Scholar 

  • Giacopini, M., Fowell, M. T., Dini, D., & Strozzi, A. (2010). A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. Journal of Tribology, 132(4), 041702. https://doi.org/10.1115/1.4002215.

    Article  Google Scholar 

  • Greenwood, J. A., & Tripp, J. H. (1970). The contact of two nominally flat rough surfaces. Proceedings of the Institution of Mechanical Engineers, 185(48), 625–633. ISSN 0020-3483.

    Google Scholar 

  • Gustafsson, I., Rajagopal, K. R., Stenberg, R., & Videman, J. (2015). Nonlinear Reynolds equation for hydrodynamic lubrication. Applied Mathematical Modelling, 39(17), 5299–5309. ISSN 0307-904X. https://doi.org/10.1016/j.apm.2015.03.028.

    Article  MathSciNet  Google Scholar 

  • Habchi, W. (2018). Finite element modeling of elastohydrodynamic lubrication problems. https://doi.org/10.1002/9781119225133.

    Book  MATH  Google Scholar 

  • Habchi, W. (2019). A schur-complement model-order-reduction technique for the finite element solution of transient elastohydrodynamic lubrication problems. Advances in Engineering Software, 127, 28–37. https://doi.org/10.1016/j.advengsoft.2018.10.007.

    Article  Google Scholar 

  • Holmes, M. A. J. (2002). Transient analysis of the point contact elastohydrodynamic lubrication problem using coupled solution methods. Ph.D. thesis, Cardiff University.

    Google Scholar 

  • Holmes, M. J. A., Evans, H. P., Hughes, T. G., & Snidle, R. W. (2003a). Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method part 1: Theory and validation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(4), 289–304. https://doi.org/10.1243/135065003768618641.

    Article  Google Scholar 

  • Holmes, M. J. A., Evans, H. P., Hughes, T. G., & Snidle, R. W. (2003b). Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method part 2: Results. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(4), 305–322. https://doi.org/10.1243/135065003768618650.

    Article  Google Scholar 

  • Hooke, C. J., & Li, K. Y. (2006). Rapid calculation of the pressures and clearances in rough, elastohydrodynamically lubricated contacts under pure rolling. part 1: Low amplitude, sinusoidal roughness. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(6), 901–913. https://doi.org/10.1243/09544062C03405.

    Google Scholar 

  • Jakobsson, B., & Floberg, L. (1957). The finite journal bearing, considering vaporization. Technical Report 190, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Liu, S., Wang, Q., & Liu, G. (2000). A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear, 243(1–2), 101–111. ISSN 0043-1648. https://doi.org/10.1016/S0043-1648(00)00427-0.

    Article  Google Scholar 

  • Liu, S., Hua, D., Chen, W. W., & Wang, Q. J. (2007). Tribological modeling: Application of fast Fourier transform. Tribology International, 40(8), 1284–1293. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2007.02.004.

    Article  Google Scholar 

  • Lukkassen, D., Meidell, A., & Wall, P. (2009). Homogenization of some variational problems connected to the theory of lubrication. International Journal of Engineering Science, 47(1), 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Lukkassen, D., Nguetseng, G., & Wall, P. (2002). Two-scale convergence. International Journal of Pure and Applied Mathematics, 2(1), 33–81.

    MathSciNet  MATH  Google Scholar 

  • Olsson, K. O. (1965). Cavitation in dynamically loaded bearings. Technical Report 308, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.

    Google Scholar 

  • Olver, A. V., Fowell, M. T., Spikes, H. A., & Pegg, I. G. (2006). ‘inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(2), 105–108. 10.1243/13506501JET168. https://doi.org/10.1243/13506501JET168.

    Article  Google Scholar 

  • Patir, N. (1978). A numerical procedure for random generation of rough surfaces. Wear, 47(2), 263–277. ISSN 0043-1648. https://doi.org/10.1016/0043-1648(78)90157-6.

    Article  Google Scholar 

  • Patir, N., & Cheng, H. S. (1978). An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Tribology, Transactions of the ASME, 100, 12–17.

    Google Scholar 

  • Patir, N., & Cheng, H. S. (1979). Application of average flow model to lubrication between rough sliding surfaces. Journal of Tribology, Transactions of the ASME, 101, 220–230.

    Google Scholar 

  • Pérez-Ràfols, E., & Almqvist, A. (2019). Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribology International, 131, 591–604. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2018.11.020.

    Article  Google Scholar 

  • Pérez-Ràfols, E., Larsson, R., Lundström, T. S., Wall, P., & Almqvist, A. (2016). A stochastic two-scale model for pressure-driven flow between rough surfaces. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, 472(2190), 20160069. https://doi.org/10.1098/rspa.2016.0069.

    Article  MathSciNet  MATH  Google Scholar 

  • Persson, B. N. J. (2010). Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 22(26). https://doi.org/10.1088/0953-8984/22/26/265004.

    Google Scholar 

  • Rajagopal, K. R., & Szeri, A. Z. (2003). On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 2771–2786.

    Google Scholar 

  • Reynolds, O. (1886). On the theory of lubrication and its application to Mr. Beauchamps tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Transactions of the Royal Society of London A, 177, 157–234.

    Google Scholar 

  • Rodhe, S. M., Whitaker, K. W., & McAllister, G. T. (1980). A mixed friction model for dynamically loaded contacts with application to piston ring lubrication. In Surface roughness effects in hydrodynamic and mixed lubrication. ASME Winter Annual Meeting, Chicago (pp. 19–50).

    Google Scholar 

  • Sahlin, F., Almqvist, A., Larsson, R., & Glavatskih, S. (2007). A cavitation algorithm for arbitrary lubricant compressibility. Tribology International, 40(8), 1294–1300. ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2007.02.009.

    Article  Google Scholar 

  • Sahlin, F., Larsson, R., Marklund, P., Lugt, P. M., & Almqvist, A. (2010a). A mixed lubrication model incorporating measured surface topography. part 1: theory of flow factors. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(4), 335–351. https://doi.org/10.1243/13506501JET658.

    Article  Google Scholar 

  • Sahlin, F., Larsson, R., Marklund, P., Lugt, P. M., & Almqvist, A. (2010b). A mixed lubrication model incorporating measured surface topography. Part 2: Roughness treatment, model validation, and simulation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(4), 353–365. https://doi.org/10.1243/13506501JET659.

    Article  Google Scholar 

  • Scaraggi, M., & Carbone, G. (2012). A two-scale approach for lubricated soft-contact modeling: An application to lip-seal geometry. Advances in Tribology. https://doi.org/10.1155/2012/412190.

    Article  Google Scholar 

  • Shirzadegan, M., Almqvist, A., & Larsson, R. (2016). Fully coupled ehl model for simulation of finite length line cam-roller follower contacts. Tribology International, 103, 584–598. https://doi.org/10.1016/j.triboint.2016.08.017.

    Article  Google Scholar 

  • Söderfjäll, M. (2017). Friction in piston ring—Cylinder liner contacts. Ph.D. thesis, Luleå University of Technology, Machine Elements.

    Google Scholar 

  • Tian, X., & Bhushan, B. (1996). A numerical three-dimensional model for the contact of rough surfaces by variational principle. Journal of Tribology, 118(1), 33–42. ISSN 07424787. https://doi.org/10.1115/1.2837089.

    Article  Google Scholar 

  • Venner, C. H., & Lubrecht, A. A. (2000). Multilevel methods in lubrication. Tribology Series,37.

    Google Scholar 

  • Vijayaraghavan, D., & Keith Jr, T. G. (1989). Development and evaluation of a cavitation algorithm. STLE Tribology Transactions, 32(2), 225–233.

    Google Scholar 

  • Vijayaraghavan, D., & Keith Jr, T. G. (1990). An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm. Journal of Tribology, Transactions of the ASME, 112(1), 44–51. ISSN 0742–4787.

    Google Scholar 

  • Wall, P. (2007). Homogenization of Reynolds equation by two-scale convergence. Chinese Annals of Mathematics—Series B, 28(3), 363–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W. Z., Wang, H., Liu, Y. C., Hu, Y. Z., & Zhu, D. (2003). A comparative study of the methods for calculation of surface elastic deformation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(2), 145–154. ISSN 1350-6501. https://doi.org/10.1243/13506500360603570.

    Article  Google Scholar 

  • Woods, C. M., & Brewe, D. E. (1989). The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques. Journal of Tribology, 111(2), 302–308.

    Google Scholar 

  • Zhu, D., Liu, Y., & Wang, Q. (2015). On the numerical accuracy of rough surface ehl solution. Tribology and Lubrication Technology, 71(1), 40–55. https://doi.org/10.1080/10402004.2014.886349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Almqvist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almqvist, A., Pérez-Ràfols, F. (2020). Modelling Flows in Lubrication. In: Paggi, M., Hills, D. (eds) Modeling and Simulation of Tribological Problems in Technology. CISM International Centre for Mechanical Sciences, vol 593. Springer, Cham. https://doi.org/10.1007/978-3-030-20377-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20377-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20376-4

  • Online ISBN: 978-3-030-20377-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics