Skip to main content

A New Approach for Estimating Tire-Road Longitudinal Forces for a Race Car

  • Conference paper
  • First Online:
  • 60 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Abstract

In vehicle dynamics, the determination of the tire-road interaction forces plays a fundamental role in the analysis of vehicle behavior. This paper proposes a simple yet effective approach to estimate longitudinal forces. The proposed approach: i) is based on equilibrium equations; ii) analyses the peculiarities of driving and braking phases; iii) takes into account the interactions between vehicle sprung mass and unsprung mass. The unsprung mass is often neglected but that might lead to significant approximations, which are deemed unacceptable in performance or motorsport environments. The effectiveness of the proposed approach is assessed using experimental data obtained from a high performance racing car. Results show that the proposed approach estimates tire longitudinal forces with differences up to 10% when compared against a simpler formulation which uses only the overall mass of the vehicle. Therefore the distinction among vehicle sprung and unsprung masses, which is likely to be an easily obtainable piece of information in motorsport environments, is exploited in this approach to provide significant benefits in terms of longitudinal force estimation, ultimately aimed at maximizing vehicle performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guiggiani, M.: The science of vehicle dynamics. 2nd edn. Springer, Pisa, Italy (2018).

    Google Scholar 

  2. Wong, J. Y.: Theory of ground vehicles. 4th edn. John Wiley & Sons, New York, USA (2008).

    Google Scholar 

  3. Rajamani, R.: Vehicle dynamics and control. 2nd edn. Springer, New York, USA (2011).

    Google Scholar 

  4. Meywerk, M.: Vehicle dynamics. 1st edn. John Wiley & Sons (2015).

    Google Scholar 

  5. Lenzo, B., Bucchi, F., Sorniotti, A., Frendo, F., On the handling performance of a vehicle with different front-to-rear wheel torque distributions. Vehicle System Dynamics, in press (2018).

    Google Scholar 

  6. Acosta, M., Kanarachos, S.: Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares. Neural Computing and Applications, 1-21 (2017).

    Google Scholar 

  7. Dakhlallah, J., Glaser, S., Mammar, S., Sebsadji, Y.: Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. In AMERICAN CONTROL CONFERENCE 2008, IEEE, pp. 4597-4602 (2008).

    Google Scholar 

  8. Chindamo, D., Lenzo, B., Gadola, M.: On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations. Applied Sciences, 8(3), p.355 (2018).

    Google Scholar 

  9. Farroni, F.: TRICK-Tire/Road Interaction Characterization & Knowledge - A tool for the evaluation of tire and vehicle performances in outdoor test sessions. Mechanical Systems and Signal Processing 72, 808-831 (2016).

    Google Scholar 

  10. Duarte, F., Ferreira, A., Fael, P. Software tool for simulation of vehicle–road interaction. Engineering Computations 34(5), 1501-1526 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basilio Lenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dell’Annunziata, G.N., Lenzo, B., Farroni, F., Sakhnevych, A., Timpone, F. (2019). A New Approach for Estimating Tire-Road Longitudinal Forces for a Race Car. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_355

Download citation

Publish with us

Policies and ethics