Skip to main content

Self-stabilizing Gellular Automata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

Gellular automata are a class of cellular automata having the features: asynchrony, Boolean totality, and non-camouflage. Gellular automata have been introduced as models of smart materials made of porous gels and chemical solutions, which are expected to have abilities such as self-repair. Therefore investigating gellular automata that are self-stable is an important research topic as self-stability implies convergence to a target configuration even under external disturbances. In this paper, we present gellular automata which solve maze problems self-stably. We also briefly describe gellular automata that solve the leader election problem. We thus discuss the possibility of implementing self-stable distributed algorithms by gellular automata.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  3. Golzari, S., Meybodi, M.R.: A maze routing algorithm based on two dimensional cellular automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 564–570. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201_65

    Chapter  MATH  Google Scholar 

  4. Hagiya, M., et al.: On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08123-6_15

    Chapter  Google Scholar 

  5. Hosoya, T., Kawamata, I., Shin-ichiro, M.N., Murata, S.: Pattern formation on discrete gel matrix based on DNA computing. New Gener. Comput. 37(1), 97–111 (2019)

    Article  Google Scholar 

  6. Isokawa, T., Peper, F., Kawamata, I., Matsui, N., Murata, S., Hagiya, M.: Universal totalistic asynchonous cellular automaton and its possible implementation by DNA. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 182–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_15

    Chapter  MATH  Google Scholar 

  7. Kawamata, I., Yoshizawa, S., Takabatake, F., Sugawara, K., Murata, S.: Discrete DNA reaction-diffusion model for implementing simple cellular automaton. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 168–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_14

    Chapter  Google Scholar 

  8. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31(1), 27–45 (2013)

    Article  Google Scholar 

  9. Pech, A., Hingston, P., Masek, M., Lam, C.P.: Evolving cellular automata for maze generation. In: Chalup, S.K., Blair, A.D., Randall, M. (eds.) ACALCI 2015. LNCS (LNAI), vol. 8955, pp. 112–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14803-8_9

    Chapter  Google Scholar 

  10. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Computing. Springer, Berlin (2012). https://doi.org/10.1007/978-3-540-92910-9

    Book  MATH  Google Scholar 

  11. Wang, S., Imai, K., Hagiya, M.: On the composition of signals in gellular automata. In: 2014 Second International Symposium on Computing and Networking (CANDAR), pp. 499–502. IEEE (2014)

    Google Scholar 

  12. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  13. Yamashita, T., Hagiya, M.: Simulating population protocols by gellular automata. In: 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1579–1585. IEEE (2018)

    Google Scholar 

  14. Yamashita, T., Isokawa, T., Peper, F., Kawamata, I., Hagiya, M.: Turing-completeness of asynchronous non-camouflage cellular automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 187–199. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1_15

    Chapter  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 17K19961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Hagiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamashita, T., Yagawa, A., Hagiya, M. (2019). Self-stabilizing Gellular Automata. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics