Skip to main content

Optical Methods for Monitoring Demineralization and Caries

  • Chapter
  • First Online:
Oral Diagnosis

Abstract

In this chapter optical methods for monitoring demineralization and remineralization on tooth coronal and root surfaces are presented. Methods discussed include transillumination and reflectance imaging with visible and near-IR light, fluorescence based imaging methods and optical coherence tomography (OCT). OCT can be used to acquire tomographic images of the structure of lesions in vivo and can be used to provide depth resolved measurements of the severity of demineralization. OCT can be used to detect if occlusal and proximal lesions have penetrated through the enamel to the underlying dentin. In addition, OCT can be used to monitor changes in lesion severity and presence of a transparent highly remineralized surface zone that is formed when lesions become arrested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chauncey HH, Glass RL, Alman JE. Dental caries, principal cause of tooth extraction in a sample of US male adults. Caries Res. 1989;23:200–5.

    Article  PubMed  Google Scholar 

  2. Kaste LM, Selwitz RH, Oldakowski RJ, Brunelle JA, Winn DM, Brown LJ. Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988-1991. J Dent Res. 1996;75:631–41.

    Article  PubMed  Google Scholar 

  3. Winn DM, Brunelle JA, Selwitz RH, Kaste LM, Oldakowski RJ, Kingman A, Brown LJ. Coronal and root caries in the dentition of adults in the United States, 1988-1991. J Dent Res. 1996;75:642–51.

    Article  PubMed  Google Scholar 

  4. NIH. Diagnosis and management of dental caries throughout life: NIH consensus statement. Report nr 18; 2001. p. 1–24.

    Google Scholar 

  5. ten Cate JM, van Amerongen JP. Caries diagnosis: conventional methods. In: Early detection of dental caries. Bloomington: Indiana University; 1996. p. 27–37.

    Google Scholar 

  6. Featherstone JDB. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol. 1999;27:31–40.

    Article  PubMed  Google Scholar 

  7. Dodds DJ. Dental caries diagnosis—toward the 21st century. Nat Med. 1996;2:281.

    Article  Google Scholar 

  8. Carlos JP, Brunelle JA, editors. Oral health surveys of the NIDR: diagnostic criteria and procedures. NIH Publication No. 91-2870. Bethesda: U.S. Department of Health and Human Services; 1991.

    Google Scholar 

  9. Ekstrand K, Qvist V, Thylstrup A. Light microscope study of the effect of probing in occlusal surfaces. Caries Res. 1987;21(4):368–74.

    Article  PubMed  Google Scholar 

  10. Kidd EAM, Ricketts DNJ, Pitts NB. Occlusal caries diagnosis: a changing challenge for clinicians and epidemiologists. J Dent Res. 1993;21:3232–331.

    Article  Google Scholar 

  11. Lussi A, Firestone A, Schoenberg V, Hotz P, Stich H. In vivo diagnosis of fissure caries using a new electrical resistance monitor. Caries Res. 1991;29:81–7.

    Article  Google Scholar 

  12. Lussi A, Imwinkelreid S, Pitts NB, Longbottom C, Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res. 1999;33:261–6.

    Article  PubMed  Google Scholar 

  13. Ekstrand K, Ricketts DNJ, Kidd EAM, Qvist V, Thylstrup A. Reproducibility and accuracy of three methods for assessment of demineralization depth on the occlusal surface. Caries Res. 1997;31:224–31.

    Article  PubMed  Google Scholar 

  14. Wenzel A. New caries diagnostic methods. J Dent Educ. 1993;57:428–32.

    PubMed  Google Scholar 

  15. Ferreira Zandona A, Santiago E, Eckert G, Fontana M, Ando M, Zero DT. Use of ICDAS combined with quantitative light-induced fluorescence as a caries detection method. Caries Res. 2010;44(3):317–22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pitts N. “ICDAS”—an international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management. Community Dent Health. 2004;21(3):193–8.

    PubMed  Google Scholar 

  17. Pitts N, editor. Detection, assessment, diagnosis and monitoring of caries, vol. 21. Basel: Karger; 2009.

    Google Scholar 

  18. Pitts N. Advances in radiographic detection methods and caries management rationale. In: Early detection of dental caries. Bloomington: Indiana University; 1996. p. 39–50.

    Google Scholar 

  19. Lenhard M, Mayer T, Pioch T, Eickholz P. A method to monitor dental demineralization in vitro. Caries Res. 1996;30:326–33.

    Article  PubMed  Google Scholar 

  20. Pine CM. Fiber-optic transillumination (FOTI) in caries diagnosis. In: Early detection of dental caries. Bloomington: Indiana University; 1996. p. 51–66.

    Google Scholar 

  21. Pine CM, ten Bosch JJ. Dynamics of and diagnostic methods for detecting small carious lesions. Caries Res. 1996;30(6):381–8.

    Article  PubMed  Google Scholar 

  22. Peers A, Hill FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnossis of small approximal carious lesions. Caries Res. 1993;27:307–11.

    Article  PubMed  Google Scholar 

  23. Peltola J, Wolf J. Fiber optics transillumination in caries diagnosis. Proc Finn Dent Soc. 1981;77:240–4.

    PubMed  Google Scholar 

  24. Barenie J, Leske G, Ripa LW. The use of fiber optic transillumination for the detection of proximal caries. Oral Surg. 1973;36:891–7.

    Article  PubMed  Google Scholar 

  25. Holt RD, Azeevedo MR. Fiber optic transillumination and radiographs in diagnosis of approximal caries in primary teeth. Community Dent Health. 1989;6:239–47.

    PubMed  Google Scholar 

  26. Mitropoulis CM. The use of fiber optic transillumination in the diagnosis of posterior approximal caries in clinical trials. Caries Res. 1985;19:379–84.

    Article  Google Scholar 

  27. Schneiderman A, Elbaum M, Schultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study. Caries Res. 1997;31:103–10.

    Article  PubMed  Google Scholar 

  28. Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995;34(7):1278–85.

    Article  PubMed  Google Scholar 

  29. Jones RS, Fried D. Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel. In: Lasers in dentistry VIII. Proc SPIE vol. 4610; 2002. p. 187–190.

    Google Scholar 

  30. Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310-nm. J Biomed Optics. 2006;11(3):34023.

    Article  Google Scholar 

  31. Jones RS, Huynh GD, Jones GC, Fried D. Near-IR transillumination at 1310-nm for the imaging of early dental caries. Opt Express. 2003;11(18):2259–65.

    Article  PubMed  Google Scholar 

  32. Buhler C, Ngaotheppitak P, Fried D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express. 2005;13(2):573–82.

    Article  PubMed  Google Scholar 

  33. Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1,310 nm. Lasers Surg Med. 2010;42(4):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jones G, Jones RS, Fried D. Transillumination of interproximal caries lesions with 830-nm light. In: Lasers in dentistry X. SPIE. vol. 5313; 2004. p. 17–22.

    Google Scholar 

  35. Fried D, Featherstone JDB, Darling CL, Jones RS, Ngaotheppitak P, Buehler CM. Early caries imaging and monitoring with near-IR light. Dent Clin North Am. 2005;49(4):771–94.

    Article  PubMed  Google Scholar 

  36. Hirasuna K, Fried D, Darling CL. Near-IR imaging of developmental defects in dental enamel. J Biomed Opt. 2008;13(4):044011.

    Article  PubMed  Google Scholar 

  37. Lee C, Lee D, Darling CL, Fried D. Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm. J Biomed Opt. 2010;15(4):047011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karlsson L, Maia AMA, Kyotoku BBC, Tranaeus S, Gomes ASL, Margulis W. Near-infrared transillumination of teeth: measurement of a system performance. J Biomed Opt. 2010;15(3):036001.

    Article  PubMed  Google Scholar 

  39. Zakian C, Pretty I, Ellwood R. Near-infrared hyperspectral imaging of teeth for dental caries detection. J Biomed Opt. 2009;14(6):–064047.

    Article  PubMed  Google Scholar 

  40. Almaz EC, Simon JC, Fried D, Darling CL. Influence of stains on lesion contrast in the pits and fissures of tooth occlusal surfaces from 800-1600-nm. In: Lasers in dentistry XXII. Proc SPIE. vol. 96920X; 2016. p. 1–6.

    Google Scholar 

  41. Chung S, Fried D, Staninec M, Darling CL. Multispectral near-IR reflectance and transillumination imaging of teeth. Biomed Opt Express. 2011;2(10):2804–14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chong SL, Darling CL, Fried D. Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography. Lasers Surg Med. 2007;39(5):422–7.

    Article  PubMed  Google Scholar 

  43. Purdell-Lewis DJ, Pot T. A comparison of radiographic and fibre-optic diagnoses of approximal caries lesions. J Dent. 1974;2(4):143–8.

    Article  PubMed  Google Scholar 

  44. Vaarkamp J, ten Bosch JJ, Verdonschot EH, Bronkhoorst EM. The real performance of bitewing radiography and fiber-optic transillumination in approximal caries diagnosis. J Dent Res. 2000;79(10):1747–51.

    Article  PubMed  Google Scholar 

  45. Stephen KW, Russell JI, Creanor SL, Burchell CK. Comparison of fibre optic transillumination with clinical and radiographic caries diagnosis. Community Dent Oral Epidemiol. 1987;15(2):90–4.

    Article  PubMed  Google Scholar 

  46. Staninec M, Douglas SM, Darling CL, Chan K, Kang H, Lee RC, Fried D. Nondestructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med. 2011;43(10):951–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simon JC, Lucas SA, Lee RC, Staninec M, Tom H, Chan KH, Darling CL, Fried D. Near-IR transillumination and reflectance imaging at 1300-nm and 1500-1700-nm for in vivo caries detection. Lasers Surg Med. 2016;48(6):828–36.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuhnisch J, Sochtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, Hickel R. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2015;20(4):821–9.

    Article  PubMed  Google Scholar 

  49. Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45(6):531–8.

    PubMed  Google Scholar 

  50. Angmar-Mansson B, ten Bosch JJ. Optical methods for the detection and quantification of caries. Adv Dent Res. 1987;1(1):14–20.

    Article  PubMed  Google Scholar 

  51. ten Bosch JJ, van der Mei HC, Borsboom PCF. Optical monitor of in vitro caries. Caries Res. 1984;18:540–7.

    Article  PubMed  Google Scholar 

  52. Benson PE, Ali Shah A, Robert Willmot D. Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets. Angle Orthod. 2008;78(2):288–93.

    Article  PubMed  Google Scholar 

  53. Everett MJ, Colston BW, Sathyam US, Silva LBD, Fried D, Featherstone JDB. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT). In: Lasers in dentistry V. SPIE. vol. 3593; 1999. p. 177–183.

    Google Scholar 

  54. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig T, Lee CQ. Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Optics. 2002;7(4):618–27.

    Article  Google Scholar 

  55. Brinkman J, ten Bosch JJ, Borsboom PCF. Optical quantification of natural caries in smooth surfaces of extracted teeth. Caries Res. 1988;22:257–62.

    Article  PubMed  Google Scholar 

  56. Ko CC, Tantbirojn D, Wang T, Douglas WH. Optical scattering power for characterization of mineral loss. J Dent Res. 2000;79(8):1584–9.

    Article  PubMed  Google Scholar 

  57. Blodgett DW, Webb SC. Optical BRDF and BSDF measurements of human incisors from visible to mid-infrared wavelengths. Proc SPIE Int Soc Opt Eng. 2001;4257:448–54.

    Google Scholar 

  58. Analoui M, Ando M, Stookey GK. Comparison of Reflectance Spectra of Sound and Carious Enamel. In: Lasers in Dentsitry VI. SPIE. vol. 3910; 2000. p. 1017–2661.

    Google Scholar 

  59. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med. 2009;41(3):208–13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fried WA, Chan KH, Fried D, Darling CL. High contrast reflectance imaging of simulated lesions on tooth occlusal surfaces at near-IR wavelengths. Lasers Surg Med. 2013;45:533–41.

    PubMed  PubMed Central  Google Scholar 

  61. Zhang L, Nelson LY, Seibel EJ. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope. J Biomed Opt. 2012;17(7):076019.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Spitzer D, ten Bosch JJ. The absorption and scattering of light in bovine and human dental enamel. Calcif Tiss Res. 1975;17:129–37.

    Article  Google Scholar 

  63. Zijp JR, ten Bosch JJ, Groenhuis RA. HeNe laser light scattering by human dental enamel. J Dent Res. 1995;74:1891–8.

    Article  PubMed  Google Scholar 

  64. Simon JC, Chan KH, Darling CL, Fried D. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity. Lasers Surg Med. 2014;46(3):203–15.

    Article  PubMed  Google Scholar 

  65. Alfano RR, Lam W, Zarrabi HJ, Alfano MA, Cordero J, Tata DB. Human teeth with and without caries studied by laser scattering, fluorescence and absorption spectroscopy. IEEE J Quant Electr. 1984;20:1512–5.

    Article  Google Scholar 

  66. Bjelkhagen H, Sundstrom F. A clinically applicable laser luminescence for the early detection of dental caries. IEEE J Quant Electr. 1981;17:266–8.

    Article  Google Scholar 

  67. Koenig K, Schneckenburger H, Hemmer J, Tromberg BJ, Steiner RW, Rudolf W. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma. In: Advances in laser and light spectroscopy to diagnose cancer and other diseases. SPIE. vol. 2135; 1994. p. 129–138.

    Google Scholar 

  68. Shi XQ, Welander U, Angmar-Mansson B. Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison. Caries Res. 2000;34:151–8.

    Article  PubMed  Google Scholar 

  69. Lussi A, Hack A, Hug I, Heckenberger H, Megert B, Stich H. Detection of approximal caries with a new laser fluorescence device. Caries Res. 2006;40(2):97–103.

    Article  PubMed  Google Scholar 

  70. ten Bosch JJ. Summary of research of quantitative light fluorescence. In: Early detection of dental caries II. Indiana University. Vol. 4; 1999. p. 261–278.

    Google Scholar 

  71. Lakowicz JR. Principles of fluorecence spectroscopy. New York: Kluwer Academic; 1999.

    Book  Google Scholar 

  72. Hafstroem-Bjoerkman U, de Josselin de Jong E, Oliveby A, Angmar-Mansson B. Comparison of laser fluorescence and longitudinal microradiography for quantitative assessment of in vitro enamel caries. Caries Res. 1992;26:241–7.

    Article  Google Scholar 

  73. Ando M, Gonzalez-Cabezas C, Isaacs RL, Eckert AF, Stookey GK. Evaluation of several techniques for the detection of secondary caries adjacent to amalgam restorations. Caries Res. 2004;38:350–6.

    Article  PubMed  Google Scholar 

  74. de Josselin de Jong E, Sundstrom F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Mansson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995;29(1):2–7.

    Article  PubMed  Google Scholar 

  75. Fontana M, Li Y, Dunipace AJ, Noblitt TW, Fischer G, Katz BP, Stookey GK. Measurement of enamel demineralization using microradiography and confocal microscopy. Caries Res. 1996;30:317–25.

    Article  PubMed  Google Scholar 

  76. Stookey GK. Quantitative light fluorescence: a technology for early monitoring of the caries process. Dent Clin North Am. 2005;49(4):753–70.

    Article  PubMed  Google Scholar 

  77. Amaechi BT, Podoleanu A, Higham SM, Jackson DA. Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt. 2003;8(4):642–7.

    Article  PubMed  Google Scholar 

  78. Ando M, Eckert GJ, Stookey GK, Zero DT. Effect of imaging geometry on evaluating natural white-spot lesions using quantitative light-induced fluorescence. Caries Res. 2004;38(1):39–44.

    Article  PubMed  Google Scholar 

  79. Ando M, Schemehorn BR, Eckert GJ, Zero DT, Stookey GK. Influence of enamel thickness on quantification of mineral loss in enamel using laser-induced fluorescence. Caries Res. 2003;37(1):24–8.

    Article  PubMed  Google Scholar 

  80. al-Khateeb S, Oliveby A, de Josselin de Jong E, Angmar-Mansson B. Laser fluorescence quantification of remineralisation in situ of incipient enamel lesions: influence of fluoride supplements. Caries Res. 1997;31(2):132–40.

    Article  PubMed  Google Scholar 

  81. Tranaeus S, Al-Khateeb S, Bjorkman S, Twetman S, Angmar-Mansson B. Application of quantitative light-induced fluorescence to monitor incipient lesions in caries-active children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci. 2001;109(2):71–5.

    Article  PubMed  Google Scholar 

  82. al-Khateeb S, ten Cate JM, Angmar-Mansson B, de Josselin de Jong E, Sundstrom G, Exterkate RA, Oliveby A. Quantification of formation and remineralization of artificial enamel lesions with a new portable fluorescence device. Adv Dent Res. 1997;11(4):502–6.

    Article  PubMed  Google Scholar 

  83. Konig K, Schneckenburger H, Hibst R. Time-gated in vivo autofluorescence imaging of dental caries. Cell Mol Biol (Noisy-le-Grand). 1999;45(2):233–9.

    Google Scholar 

  84. Hall A, Girkin JM. A review of potential new diagnostic modalities for caries lesions. J Dent Res. 2004;83 Spec No C:C89–94.

    Article  PubMed  Google Scholar 

  85. Eggertsson H, Analoui M, MHvd V, Gonzalez-Cabezas C, Eckert GJ, Stookey GK. Detection of early interproximal caries in vitro using laser fluorescence, dye-enhanced laser fluorescence and direct visual examination. Caries Res. 1999;33:227–33.

    Article  PubMed  Google Scholar 

  86. Ando M, Hall AF, Eckert GJ, Schemehorn BR, Analoui M, Stookey GK. Relative ability of laser fluorescence techniques to quantitate early mineral loss in vitro. Caries Res. 1997;31(2):125–31.

    Article  PubMed  Google Scholar 

  87. Bouma BE, Tearney GJ. Handbook of optical coherence tomography. New York: Marcel Dekker; 2002.

    Google Scholar 

  88. Derickson D. Fiber optic test and measurement. Upper Saddle River: Prentice Hall; 1998.

    Google Scholar 

  89. Youngquist RC, Carr S, Davies DEN. Optical coherence-domain reflectometry. Appl Opt. 1987;12:158–60.

    Google Scholar 

  90. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Colston B, Everett M, Da Silva L, Otis L, Stroeve P, Nathel H. Imaging of hard and soft tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998;37(19):3582–5.

    Article  PubMed  Google Scholar 

  92. Colston BW, Sathyam US, DaSilva LB, Everett MJ, Stroeve P. Dental OCT. Opt Express. 1998;3(3):230–8.

    Article  PubMed  Google Scholar 

  93. Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, Gladkova ND, Ourutina MN, Warren JA, Reitze DH. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(3):239–51.

    Article  PubMed  Google Scholar 

  94. Rongguang L, Wong V, Marcus M, Burns P, McLaughlin P. Multimodal imaging system for dental caries detection. Proc SPIE Int Soc Opt Eng. 2008;6425:642502.

    Google Scholar 

  95. Madjarova VD, Yasuno Y, Makita S, Hori Y, Voeffray JB, Itoh M, Yatagai T, Tamura M, Nanbu T. Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography. In: Coherence domain optical methods and optical coherence tomography in biomedicine X. 2006;6079(1):60790N-60791-60797.

    Google Scholar 

  96. Seon YR, Jihoon N, Hae YC, Woo JC, Byeong HL, Gil-Ho Y. Realization of fiber-based OCT system with broadband photonic crystal fiber coupler. Proc SPIE Int Soc Opt Eng. 2006;6079(1):60791N-60791-60797.

    Google Scholar 

  97. Yamanari M, Makita S, Violeta DM, Yatagai T, Yasuno Y. Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt Express. 2006;14(14):6502.

    Article  PubMed  Google Scholar 

  98. Furukawa H, Hiro-Oka H, Amano T, DongHak C, Miyazawa T, Yoshimura R, Shimizu K, Ohbayashi K. Reconstruction of three-dimensional structure of an extracted tooth by OFDR-OCT. In: Coherence domain optical methods and optical coherence tomography in biomedicine X. SPIE. vol. 6079; 2006. p. 60790T-60791-60797.

    Google Scholar 

  99. Amaechi BT, Higham SM, Podoleanu AG, Rodgers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries. J Oral Rehab. 2001;28(12):1092–3.

    Article  Google Scholar 

  100. Sowa MG, Popescu DP, Friesen JR, Hewko MD, Choo-Smith LP. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth. J Biophotonics. 2011;4(11–12):814–23.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Espigares J, Sadr A, Hamba H, Shimada Y, Otsuki M, Tagami J, Sumi Y. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography. J Med Imag. 2015;2(1):014001.

    Article  Google Scholar 

  102. Baumgartner A, Hitzenberger CK, Dicht S, Sattmann H, Moritz A, Sperr W, Fercher AF. Optical coherence tomography for dental structures. In: Lasers in Dentistry IV. SPIE. vol. 3248; 1998. p. 130–136.

    Google Scholar 

  103. Baumgartner A, Dicht S, Hitzenberger CK, Sattmann H, Robi B, Moritz A, Sperr W, Fercher AF. Polarization-sensitive optical optical coherence tomography of dental structures. Caries Res. 2000;34:59–69.

    Article  PubMed  Google Scholar 

  104. Wang XJ, Zhang JY, Milner TE, JFd B, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt. 1999;38(10):586–90.

    Article  Google Scholar 

  105. Ko AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC, Williams P, Cleghorn B. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005;10(3):031118.

    Article  PubMed  Google Scholar 

  106. Ko AC, Hewko M, Sowa MG, Dong CC, Cleghorn B, Choo-Smith LP. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system. Opt Express. 2008;16(9):6274–84.

    Article  PubMed  Google Scholar 

  107. Jones RS, Staninec M, Fried D. Imaging artificial caries under composite sealants and restorations. J Biomed Opt. 2004;9(6):1297–304.

    Article  PubMed  Google Scholar 

  108. Jones RS, Darling CL, Featherstone JDB, Fried D. Remineralization of in vitro dental caries assessed with polarization sensitive optical coherence tomography. J Biomed Opt. 2006;11(1):014016.

    Article  PubMed  Google Scholar 

  109. Jones RS, Darling CL, Featherstone JD, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res. 2006;40(2):81–9.

    Article  PubMed  Google Scholar 

  110. Chan KH, Chan AC, Fried WA, Simon JC, Darling CL, Fried D. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography. J Biophotonics. 2015;8(1–2):36–45.

    Article  PubMed  Google Scholar 

  111. Lee RC, Kang H, Darling CL, Fried D. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography. Biomed Opt Express. 2014;5(9):2950–62.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kang H, Darling CL, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent Mater. 2012;28(5):488–94.

    Article  PubMed  Google Scholar 

  113. Jones RS, Fried D. Remineralization of enamel caries can decrease optical reflectivity. J Dent Res. 2006;85(9):804–8.

    Article  PubMed  Google Scholar 

  114. Ngaotheppitak P, Darling CL, Fried D. Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med. 2005;37(1):78–88.

    Article  PubMed  Google Scholar 

  115. Lee RC, Darling CL, Fried D. Assessment of remineralization via measurement of dehydration rates with thermal and near-IR reflectance imaging. J Dent. 2015;43:36–45.

    Article  Google Scholar 

  116. Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med. 2010;42(1):62–8.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kang H, Jiao JJ, Chulsung L, Le MH, Darling CL, Fried DL. Nondestructive assessment of early tooth demineralization using cross-polarization optical coherence tomography. IEEE J Sel Top Quantum Electron. 2010;16(4):870–6.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Makhija SK, Gilbert GH, Funkhouser E, Bader JD, Gordan VV, Rindal DB, Bauer M, Pihlstrom DJ, Qvist V, National Dental Practice-Based Research Network Collaborative Group. The prevalence of questionable occlusal caries: findings from the Dental Practice-Based Research Network. J Am Dent Assoc. 2012;143(12):1343–50.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Makhija SK, Gilbert GH, Funkhouser E, Bader JD, Gordan VV, Rindal DB, Pihlstrom DJ, Qvist V, National Dental PBRN Collaborative Group. Characteristics, detection methods and treatment of questionable occlusal carious lesions: findings from the national dental practice-based research network. Caries Res. 2014;48(3):200–7.

    Article  PubMed  Google Scholar 

  120. Makhija SK, Gilbert GH, Funkhouser E, Bader JD, Gordan VV, Rindal DB, Qvist V, Norrisgaard P, National Dental PBRN Collaborative Group. Twenty-month follow-up of occlusal caries lesions deemed questionable at baseline: findings from the National Dental Practice-Based Research Network. J Am Dent Assoc. 2014;145(11):1112–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bader JD, Shugars DA. The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. J Evid Based Dent Pract. 2006;6(1):91–100.

    Article  PubMed  Google Scholar 

  122. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent. 2002;62(4):201–13.

    Article  PubMed  Google Scholar 

  123. Douglas SM, Fried D, Darling CL. Imaging natural occlusal caries lesions with optical coherence tomograph. Proc SPIE Int Soc Opt Eng. 2010;7549:75490N.

    PubMed  PubMed Central  Google Scholar 

  124. Kang H, Darling CL, Fried D. Use of an optical clearing agent to enhance the visibility of subsurface structures and lesions from tooth occlusal surfaces. J Biomed Opt. 2016;21(8):081206.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tuchin VV. Optical clearing of tissues and blood. Bellingham: SPIE; 2006.

    Google Scholar 

  126. Zhu D, Larin KV, Luo Q, Tuchin VV. Recent progress in tissue clearing. Laser Photonics Rev. 2013;7(5):732–57.

    Article  Google Scholar 

  127. Jones RS, Fried D. The effect of high index liquids on PS-OCT imaging of dental caries. In: Lasers in Dentistry XI. SPIE. vol. 5687; 2005. p. 34–41.

    Google Scholar 

  128. Schmitt JM, Xiang SH, Yung KM. Speckle reduction techniques. In: Bouma BE, Tearney GJ, editors. Handbook of optical coherence tomography. 21st ed. New York: Marcel Dekker; 2002.

    Google Scholar 

  129. Marks DL, Ralston TS, Boppart SA. Data analysis and signal postprocessing for optical coherence tomography technology. In: Drexler W, Fujimoto JG, editors. Optical coherence tomography technology and applications. New York: Springer; 2008.

    Google Scholar 

  130. Rogowska J. Digital image processing techniques for speckle reduction, enhancement, and segmentation of optical coherence tomography (OCT) images. In: Brezinski M, editor. Optical coherence tomography: principles and applications. London: Elsevier; 2006.

    Google Scholar 

  131. Lee YK, Rhodes WT. Nonlinear image processing by a rotating kernel transformation. Opt Lett. 1990;15(23):1383–5.

    Article  PubMed  Google Scholar 

  132. Rogowska J, Brezinski ME. Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans Med Imaging. 2000;19(12):1261–6.

    Article  PubMed  Google Scholar 

  133. Rogowska J, Brezinski ME. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Phys Med Biol. 2002;47(4):641–55.

    Article  PubMed  Google Scholar 

  134. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent. 2004;2(4):377–82.

    PubMed  Google Scholar 

  135. Lee C, Darling C, Fried D. Polarization sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mat. 2009;25(6):721–8.

    Article  Google Scholar 

  136. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater. 2009;90(2):802–12.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Manesh SK, Darling CL, Fried D. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin. J Biomed Opt. 2009;14(4):044002.

    Article  PubMed  Google Scholar 

  138. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization sensitive optical coherence tomography. J Biomed Mater Res. 2009;90(2):802–12.

    Article  Google Scholar 

  139. Wada I, Shimada Y, Ikeda M, Sadr A, Nakashima S, Tagami J, Sumi Y. Clinical assessment of non carious cervical lesion using swept-source optical coherence tomography. J Biophotonics. 2015;8(10):846–54.

    Article  PubMed  Google Scholar 

  140. Otis LL, Al-Sadhan RI, Meiers J, Redford-Badwal D. Identification of occlusal sealants using optical coherence tomography. J Clin Dent. 2000;14(1):7–10.

    Google Scholar 

  141. Stahl J, Kang H, Fried D. Imaging simulated secondary caries lesions with cross polarization OCT. Proc SPIE Int Soc Opt Eng. 2010;7549:754905.

    PubMed  PubMed Central  Google Scholar 

  142. Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt. 2012;17(10):106002.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dent Mater. 2012;28(7):792–800.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, Sabet S, Chen Z, Gukasyan R, Wilder-Smith P. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med. 2010;42(8):752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tom H, Simon JC, Chan KH, Darling CL, Fried D. Near-infrared imaging of demineralization under sealants. J Biomed Opt. 2014;19(7):77003.

    Article  PubMed  Google Scholar 

  146. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, Darling CL, Fried D. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med. 2010;42:738–45.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42(5):547–55.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chan KH, Tom H, Lee RC, Kang H, Simon JC, Staninec M, Darling CL, Pelzner RB, Fried D. Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention. Lasers Surg Med. 2016;48(10):915–23.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt. 1973;12:555–63.

    Article  PubMed  Google Scholar 

  150. Koenig K, Schneckenburger H. Laser-induced Autofluorescence for Medical Diagnosis. J Fluorescence 1993; 4(1):17–40.

    Article  PubMed  Google Scholar 

  151. Zhang L, Kim AS, Ridge JS, Nelson LY, Berg JH, Seibel EJ. Trimodal detection of early childhood caries using laser light scanning and fluorescence spectroscopy: clinical prototype. J Biomed Opt. 2013;18(11):111412.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fried, D. (2020). Optical Methods for Monitoring Demineralization and Caries. In: Wilder-Smith, P., Ajdaharian, J. (eds) Oral Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-19250-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19250-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19249-5

  • Online ISBN: 978-3-030-19250-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics