Skip to main content

The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Book cover Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Salinity is considered as one of the most harming stresses faced by the plant in regard to its survival and productivity. A new biological approach “plant-microbe interaction” such as arbuscular mycorrhizal (AM) fungi to address salinity problem has recently gained momentum. Therefore, this chapter aims to provide a general overview about salinity and its effects on plant and soil, and the use of AM fungal inoculant applied to plants to alleviate salinity effects, and the mechanism of AM fungi to increase the tolerance of plants to salt stress with a crucial discussion of major accomplishments reported in this area. The results show that some mechanism of how AM fungi can increase the plant salt tolerance might work well in this regard. AM fungi maintain a superior K+:Na+ ratio that is considered as one of AM fungi’s strategies to improve tolerance to salt stress and boost absorption of P, K+, and Ca2+ over harmful Na+, thus sustaining lesser Na+:K+ ratio under salt stress. The improvement in chlorophyll as a result of AM fungi is owing in particular to the increased uptake of magnesium. AM fungi inoculation increases the activity of antioxidant enzymes in plants such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieve salt stress. An additional salt tolerance mechanism by AM fungi increases the non-antioxidant of plants by accumulating osmolytes such as proline, which maintain the osmotic adjustment of plants under salinity stress. Thus, application of AM fungi inoculant is more probably due to its economic benefits under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA, Karanxha S (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200

    Article  Google Scholar 

  • Abdel Latef AA (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun 38:43–55

    Article  CAS  Google Scholar 

  • Abdelhamid MT, Shokr M, Bekheta MA (2010) Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Commun Soil Sci Plant Anal 41:2713–2728

    Article  CAS  Google Scholar 

  • Abdelhamid MT, Rady M, Osman A, Abdalla M (2013a) Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants. J Hortic Sci Biotech 88:439–446

    Article  CAS  Google Scholar 

  • Abdelhamid MT, Sadak MSH, Schmidhalter U, El-Saady A (2013b) Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biol Colomb 18:499–510

    CAS  Google Scholar 

  • Abouelsaad I, Renault S (2018) Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. J Plant Physiol 226:136–144

    Article  CAS  PubMed  Google Scholar 

  • Adiku G, Renger M, Wessolek G, Facklam M, Hech-Bischoltz C (2001) Simulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric Water Manag 47:55–68

    Article  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer, New York, pp 25–55

    Chapter  Google Scholar 

  • Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    Article  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidative defense system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    Article  CAS  Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2014) Effect of sodium carbonate-induced salinityalkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9:460–467

    Article  CAS  Google Scholar 

  • Ahmad H, Hayat S, Ali M, Liu T, Cheng Z (2018) The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under salinity. Ecol Evol 8:5724–5740

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Eurasian J Agric Environ Sci 1:119–126

    Google Scholar 

  • Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Plant Physiol 118:562–570

    Article  CAS  Google Scholar 

  • Alia, Prasad KVSK, Saradhi PP (1995) Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39:45–47

    Article  CAS  Google Scholar 

  • Al-Karaki G, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does Arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    Article  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:207–216

    Article  CAS  Google Scholar 

  • Awad N, Turky A, Abdelhamid M, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L plants by exopolysaccharides producing bacteria. J Appl Sci Res 8:2033–2044

    CAS  Google Scholar 

  • Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhiza. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Nassar RMA, Rady MM, Gaballah MS, Thompson SM, Brestic M, Schmidhalter U, Abdelhamid MT (2016) Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their phosphorus deficiency sensitivity. J Agron Crop Sci 202:497–507

    Article  CAS  Google Scholar 

  • Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Path 102:36–45

    Article  Google Scholar 

  • Bekheta MA, Abdelhamid MT, El-Morsi AA (2009) Physiological response of Vicia faba to prohexadione–calcium under saline conditions. Planta Daninha 27:769–779

    Article  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60

    Article  CAS  Google Scholar 

  • Bockheim JG, Gennadiyev AN (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95:53–72

    Article  Google Scholar 

  • Borde MY, Dudhane MP, Jite PK (2010) AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not Sci Biol 2:64–71

    Article  CAS  Google Scholar 

  • Borde MY, Dudhane MP, Jite PK (2011) Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30:265–271

    Article  CAS  Google Scholar 

  • Bothe H (2012) Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:7–16

    Article  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and KC/NaC homeostasis. Front Plant Sci 8:1739. https://doi.org/10.3389/fpls.2017.01739

    Article  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting “omics-based” approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712. https://doi.org/10.3389/fpls.2015.00712

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta P, Kulkarni M (2014) Arbuscular mycorrhizal colonization enhances biochemical status in and mitigates adverse salt effect on two legumes. Not Sci Biol 6:381–393

    Article  Google Scholar 

  • Dawood MG, Taie HAA, Nassar RMA, Abdelhamid MT, Schmidhalter U (2014a) The changes induced in the physiological, biochemical and anatomical structure of Vicia faba by the exogenous application of proline under seawater stress. S Afr J Bot 93:54–63

    Article  CAS  Google Scholar 

  • Dawood MG, Abdelhamid MT, Schmidhalter U (2014b) Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). J Hortic Sci Biotech 89:185–192

    Article  CAS  Google Scholar 

  • Dawood MG, El-Metwally IM, Abdelhamid MT (2016) Physiological response of lupine and associated weeds grown at salt-affected soil to α-tocopherol and hoeing treatments. Gesunde Pflanzen 68:117–127

    Article  CAS  Google Scholar 

  • De Oliveira DFB, Endres L, Silva JV, Clemente PRA (2017) Pre-colonized seedlings with arbuscular mycorrhizal fungi: an alternative for the cultivation of Jatropha curcas L. in salinized soils. Theor Exp Plant Physiol 29:129–142

    Article  CAS  Google Scholar 

  • Elhindi K, Sharaf El Din A, Abdel-Salam E, Elgorban A (2016) Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular arbuscular mycorrhizal fungi. Acta Agric Scand B Soil Plant Sci 66:583–592

    CAS  Google Scholar 

  • Elhindi KM, Sharaf El-Din A, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    Article  CAS  PubMed  Google Scholar 

  • El-Lethy SR, Abdelhamid MT, Reda F (2013) Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. World Appl Sci J 26:840–850

    CAS  Google Scholar 

  • Ellis J (2017) Can plant microbiome studies lead to effective biocontrol of plant diseases? Mol Plant Microbe. https://doi.org/10.1094/MPMI-12-16-0252-CR

    Article  CAS  PubMed  Google Scholar 

  • El-Mashad AAA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    Article  CAS  PubMed  Google Scholar 

  • El-Metwally IM, Ali OAM, Abdelhamid MT (2015) Response of wheat (Triticum aestivum L.) and associated grassy weeds grown in salt-affected soil to effects of graminicides and indole acetic acid. Agriculture 61:1–11

    Google Scholar 

  • Epstein E (1977) Genetic potentials for solving problems of soil mineral stress: adaptation of crops to salinity. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University, Ithaca, pp 73–123

    Google Scholar 

  • Errakhi R, Bouteau F, Barakate M, Lebrihi A (2016) Isolation and characterization of antibiotics produced by Streptomyces J-2 and their role in biocontrol of plant diseases, especially grey mould. In: Compant S, Mathieu F (eds) Biocontrol of major grapevine diseases: leading research. CAB International, Wallingford, pp 76–83

    Chapter  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Chang W, Fenga F, Song F (2018) Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf 166:102–108

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F (2017) Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One 12(9):e0184158. https://doi.org/10.1371/journal.pone.0184158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by Mycorrhiza salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22

    Article  CAS  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. https://doi.org/10.1093/aobpla/plw055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghorbanli H, Ebrahimzadeh M, Sharifi M (2004) Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol Plant 48:575–581

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculants alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Gopal S, Chandrasekaran M, Shagol C, Kim K, Sa T (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J Soil Sci Fertil 45:582–592

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR, Maas EV (2008) Plant salt tolerance. In: Wallender WW, Tanj KK (eds) Agricultural salinity assessment and management. American Society of Civil Engineers, Reston, pp 405–459

    Google Scholar 

  • Gupta ML, Khaliq A, Pandey R, Shukla RS, Singh HK, Kumar S (2000) Vesicular–arbuscular mycorrhizal fungi associated with Ocimum spp. J Herbs Spices Med Plants 7:57–63

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, Mohammadnia S, Attai Z, Pessarakli M (2017) Effects of mycorrhiza inoculation on cucumber growth irrigated with saline water. J Plant Nutr 40:128–137

    Article  CAS  Google Scholar 

  • Hajiboland R, Joudmand A, Fotouhi K (2009) The K/Na replacement and function of antioxidant defense system in sugar beet (Beta vulgaris L.) cultivars. Acta Agric Scand B Soil Plant Sci 59:246–259

    CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh S, Laiegh F, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hameed A, Egamberdieva D, Abd Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2016a) Arbuscular mycorrhizal fungi alleviate salt stress in lupine (Lupinus termis Forsik) through modulation of antioxidant defense systems and physiological traits. Legume Res 39:198–207

    Google Scholar 

  • Hashem AEF, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Shah MA (2016b) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). BioMed Res Int 2016, 6294098, 11 p. https://doi.org/10.1155/2016/6294098

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133

    Article  CAS  PubMed  Google Scholar 

  • Hegazi AM, El-Shraiy AM, Ghoname AA (2017) Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen 69:91–102

    Article  CAS  Google Scholar 

  • Hellal FA, Abdelhameid MT, Abo-Basha DM, Zewainy RM (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vicia faba L.). J Appl Sci Res 8:4428–4433

    CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Delrio LA (1995) Salt induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:405–434. https://doi.org/10.1146/annurev-arplant-042916-040936

    Article  CAS  PubMed  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize-leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Khalloufia M, Martínez-Andújara C, Lachaâlb M, Karray-Bouraouib N, Pérez-Alfoceaa F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144

    Article  CAS  Google Scholar 

  • Khan S, Hanjra MA (2008) Sustainable land and water management policies and practices: a pathway to environmental sustainability in large irrigation systems. Land Degrad Dev 19:469–487

    Article  Google Scholar 

  • Kingsbury RW, Epstein E (1984) Selection for salt resistant spring wheat. Crop Sci 24:310–315

    Article  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over expression of Δ1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Verma P, Yadav AN, Kumar V, Dhaliwal HS (2017) Biofertilizers: eco-friendly technologies and bioresources for sustainable agriculture. In: Proceeding of international conference on innovative research in engineering science and technology, IREST/PP/014

    Google Scholar 

  • Landi S, Hausman J-F, Guerriero G, Esposito S (2017) Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci 8:1214. https://doi.org/10.3389/fpls.2017.01214

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Guo X, Feng G, Maimaitiaili B, Fan J, He X (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398:195–206

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2007) Endomycorrhizal and rhizobial symbiosis: how much do they share? J Plant Interact 2:79–88

    Article  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani M, Malakouti MJ, Miransari M (2015) Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress. Commun Soil Sci Plant Anal 46:343–357

    Article  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Metwally RA, Abdelhameed RE (2018) Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocatal Agric Biotechnol 16:538–544

    Article  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami H, Rejali F, Malakouti M (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Namdari A, Arani AB, Moradi A (2018) Arbuscular mycorrhizal (Funneliformis mosseae) improves alfalfa (Medicago sativa L.) re-growth ability in saline soil through enhanced nitrogen remobilization and improved nutritional balance. J Cent Eur Agri 19:166–183

    Article  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47:67–70

    Article  CAS  Google Scholar 

  • Orabi SA, Abdelhamid MT (2016) Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J Saudi Soc Agric Sci 15:145–154

    Google Scholar 

  • Ouda S, Noreldin T, Mounzer O, Abdelhamid MT (2015) CropSyst model for wheat irrigation water management with fresh and poor quality water. J Water Land Devel 27:41–50

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142

    Google Scholar 

  • Pandey R, Garg N (2017) High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza 27:669–682

    Article  PubMed  Google Scholar 

  • Pankievicz V, Amaral FP, Santos KF, Agtuca B, Xu Y, Schueller MJ, Arisi ACM, Steffens M, Souza EM, Pedrosa FO (2015) Robust biological nitrogen fixation in a model grass–bacterial association. Plant J 81:907–919

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Saraf M (2013) Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. Eur J Soil Biol 55:47–54

    Article  CAS  Google Scholar 

  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R (2018) Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247:573–585

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7

    Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–220

    CAS  Google Scholar 

  • Rady MM, Sadak MS, El-Lethy SR, Abdelhamid EM, Abdelhamid MT (2015) Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J Hortic Sci Biotech 90:195–202

    Article  CAS  Google Scholar 

  • Rady MM, Semida WM, Hemida KA, Abdelhamid MT (2016a) The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int J Recycl Org Waste Agr 5:311–321

    Article  Google Scholar 

  • Rady MM, Mounzer OH, Alarcón JJ, Abdelhamid MT, Howladar SM (2016b) Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. J Appl Bot Food Qual 89:21–28

    CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Ramos AC, Facanha AR, Palma LM, Okorokov LA, Cruz ZMA, Silva AG (2011) An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz J Plant Physiol 23:79–89

    Article  CAS  Google Scholar 

  • Renault S (2012) Salinity tolerance of Cornus sericea seedlings from three provenances. Acta Physiol Plant 34:1735–1746

    Article  CAS  Google Scholar 

  • Rivero J, Alvarez D, Flors V, Azcón-Aguilar C, Pozo MJ (2018) Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol 220:1322–1336. https://doi.org/10.1111/nph.15295

    Article  CAS  PubMed  Google Scholar 

  • Roberts JKM, Linker CS, Benoit AG, Jardetzky O, Nieman RH (1984) Salt Stimulation of Phosphate Uptake in Maize Root Tips Studied by 31P Nuclear Magnetic Resonance. Plant Physiol 75:947–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Negrão S, Tester M et al (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Sadak MS, Abdelhamid MT (2015) Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen 67:119–129

    Article  CAS  Google Scholar 

  • Sadak MSH, Abdelhamid MT, Schmidhalter U (2015) Effect of foliar application of amino acids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta Biolo Colomb 20:141–152

    Article  CAS  Google Scholar 

  • Sallakua G, Sandén H, Babaj I, Kaciu S, Balliu A, Rewald B (2019) Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci Hortic 243:177–188

    Article  Google Scholar 

  • Sanchez FJ, Manzanares M, De Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crop Res 59:225–235

    Article  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Satir NY, Ortas I, Satir O (2016) The influence of mycorrhizal species on sour orange (Citrus aurantium L.) growth under saline soil conditions. Pak J Agri Sci 53:399–406

    Google Scholar 

  • Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore, pp 67–97

    Chapter  Google Scholar 

  • Schubler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Semida WM, Taha RS, Abdelhamid MT, Rady MM (2014) Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S Afr J Bot 95:24–31

    Article  CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Shekoofeh E, Sepideh H, Roya R (2012) Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. Afr J Biotechnol 11:2223–2235

    CAS  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Singh RP, Choudhary A, Gulati A, Dahiya HC, Jaiwal PK, Sengar RS (1997) Response of plants to salinity in interaction with other abiotic and biotic factors. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Science, Enfield, pp 25–39

    Google Scholar 

  • Talaat NB, Shawky BT (2012) 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot 82:80–88

    Article  CAS  Google Scholar 

  • Talaat NB, Ghoniem AE, Abdelhamid MT, Shawky BT (2015) Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul 75:281–295

    Article  CAS  Google Scholar 

  • Tofighi C, Khavari-Nejad RA, Najafi F, Razavi K, Rejali F (2017) Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. J Plant Nutr 40:1091–1098

    Article  CAS  Google Scholar 

  • Tomar NS, Agarwal RM (2013) Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Am J Plant Sci 4:1134–1150

    Article  CAS  Google Scholar 

  • Upreti KK, Bhatt RM, Panneerselvam P, Varalakshmi LR (2016) Morpho-physiological responses of grape rootstock ‘Dogridge’ to arbuscular mycorrhizal fungi inoculation under salinity stress. Int J Fruit Sci 16:191–209

    Article  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Verma P, Yadav A, Khannam K, Panjiar N, Kumar S, Saxena A, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  CAS  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha TCK, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2017b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK (eds) New and future developments in microbial biotechnology and bioengineering actinobacteria: diversity and biotechnological applications. Elsevier, Atlanta, pp 13–41

    Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauhan VS, Sugitha TCK, Saxena AK, Dhaliwal HS (2017c) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8

    Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchishinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta (1)- pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang P, Wu Q-H, Zou Y-N, Bao Q, Wu Q-S (2017) Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress. Arch Agron Soil Sci 63:491–500

    Article  CAS  Google Scholar 

  • Zhang W, Wang C, Lu T, Zheng Y (2018) Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress. Plant Soil 423:125–140

    Article  CAS  Google Scholar 

  • ZhongQun H, ChaoXing H, Zhang ZB, Zou ZR, Wang HS (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59(2):128–133

    Article  CAS  Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J Agro Crop Sci 202:486–496

    Article  CAS  Google Scholar 

  • Zhu XQ, Tang M, Zhang HQ (2017) Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica 55:378–385

    Article  CAS  Google Scholar 

  • Zhu X, Cao Q, Sun L, Yang X, Yang W, Zhang H (2018) Stomatal conductance and morphology of arbuscular mycorrhizal wheat plants response to elevated CO 2and NaCl stress. Front Plant Sci 9:1363. https://doi.org/10.3389/fpls.2018.01363

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author Dr. Magdi Abdelhamid would like to express his gratitude to his colleagues at the Department of Botany, National Research Center, Egypt, for their valuable contribution in some phases of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelhamid, M.T., El-Masry, R.R., Darwish, D.S., Abdalla, M.M.F., Oba, S., Ragab, R. (2019). The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_13

Download citation

Publish with us

Policies and ethics