Skip to main content

Status and Prospects of Bacterial Inoculants for Sustainable Management of Agroecosystems

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Bacterial inoculants are bacterial species that are applied directly or indirectly to enhance the growth and yield of plants. The application of bacterial inoculants is largely due to their compatibility and complementarity with natural processes of nutrient cycling, plant protection and other related biological processes in agroecosystems. As a nature-based solution, bacterial inoculants are able to drive many beneficial biological processes in agroecosystems with little or no negative impacts. However, their applications have been limited by factors such as awareness, production quality and quantity, storage and compatibility. Although there are studies that are already investigating many of these challenges, the future prospects of the application of bacterial inoculants will be determined by the adoption of new technologies that include multi-omics approach for improving the quality as well as applicability of these beneficial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleke RA (2014) Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals – a review. J Ind Microbiol Biotechnol 41(12):1731–1741

    Article  CAS  PubMed  Google Scholar 

  • Adeleke R, Cloete T, Bertrand A, Khasa D (2010) Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26(10):1901–1913

    Article  CAS  Google Scholar 

  • Adeleke R, Cloete T, Khasa D (2012) Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation. World J Microbiol Biotechnol 28(3):1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406

    Article  CAS  Google Scholar 

  • Ahemad M, Khan M (2010) Phosphate solubilizing Enterobacter asburiae strain PS2. Afr J Microbiol Res 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100(1):51–56

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS 26(1):1–20

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29(1):29–34

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HF, El-Araby MM (2012) Evaluation of the influence of nitrogen fixing, phosphate solubilizing and potash mobilizing biofertilizers on growth, yield, and fatty acid constituents of oil in peanut and sunflower. Afr J Biotechnol 11(43):10079–10088

    CAS  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akgül D, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90(1):29–34

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosini A, de Souza R, Passaglia L (2015) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400(1–2):193–207

    Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38(1):145–180

    Article  PubMed  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204(1):57–67

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18, pp 97–116

    Chapter  Google Scholar 

  • Aseri G, Jain N, Panwar J, Rao A, Meghwal P (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117(2):130–135

    Article  Google Scholar 

  • Barea J, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40(2):129–134

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bello-Akinosho M, Adeleke R, Swanevelder D, Thantsha M (2015) Draft genome sequence of Pseudomonas sp. strain 10-1B, a polycyclic aromatic hydrocarbon degrader in contaminated soil. Genome Announc 3(3):e00325-00315

    Article  Google Scholar 

  • Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima G (2016) Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. Biomed Res Int 2016:1–10

    Article  CAS  Google Scholar 

  • Bello-Akinosho M, Adeleke R, Thantsha MS, Maila M (2017a) Pseudomonas sp.(strain 10–1B): a potential inoculum candidate for green and sustainable remediation. Remediat J (3):75–79

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berraho E, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13(5):501–510

    Article  CAS  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2343

    Article  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bloem JF, Trytsman G, Smith HJ (2009) Biological nitrogen fixation in resource-poor agriculture in South Africa. Symbiosis 48(1):18–24

    Article  CAS  Google Scholar 

  • Boonkerd N (1998) Symbiotic association between Frankia and actinorhizal plants. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Developments in plant and soil sciences, vol 79. Springer, Dordrecht

    Google Scholar 

  • Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Bio 15:328–334

    Article  CAS  Google Scholar 

  • Callaham D, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199(4331):899–902

    Article  CAS  PubMed  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Chianu JN, Nkonya EM, Mairura F, Chianu JN, Akinnifesi F (2010) Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agron Sustain Dev 31:139

    Article  Google Scholar 

  • Chianu JN, Chianu JN, Mairura F (2012) Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron Sustain Dev 32(2):545–566

    Article  CAS  Google Scholar 

  • Chorom M, Sharifi H, Motamedi H (2010) Bioremediation of a crude oil-polluted soil by application of fertilizers. Iranian J Environ Health Sci Eng 7(4):319

    CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974

    Article  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305

    Article  Google Scholar 

  • Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3(6):738

    Article  PubMed  CAS  Google Scholar 

  • Dastager SG, Deepa C, Pandey A (2011) Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol 27(2):259–265

    Article  Google Scholar 

  • Dent D, Cocking E (2017) Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the greener nitrogen revolution. Agric Food Secur 6(1):7

    Article  Google Scholar 

  • Duarah I, Deka M, Saikia N, Boruah HD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1(4):227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval BD, Hungate BA (2008) Soil science: scavenging for scrap metal. Nat Geosci 1(4):213

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2–3):184–189

    Article  Google Scholar 

  • El-Kabbany S (1999) Evaluation of four biofertilizer for bioremediation of pesticide contaminated soil. Proceedings of the international conference on hazardous waste sources, effects and management. Paper presented at the The First Conference of the Central Agricultural Pesticide Lab, Egypt, p 1555

    Google Scholar 

  • Elkan G (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40

    Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66

    Article  CAS  Google Scholar 

  • Figueiredo MDVB, Seldin L, De Araujo FF, Mariano RDLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Fukushima T, Allred BE, Sia AK, Nichiporuk R, Andersen UN, Raymond KN (2013) Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci USA 110:13821–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34(8):1305–1309

    CAS  Google Scholar 

  • Fulekar M, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  • Geetha S, Joshi SJ (2013) Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013:1–15

    Google Scholar 

  • Ghosh PK, Kumar De T, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015:575067

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Goldstein A, Krishnaraj P (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 203–213

    Chapter  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinness P, Walpole B (2012) Environmental systems and societies for the IB Diploma. Cambridge University Press, Cambridge

    Google Scholar 

  • Gupta RP, Kalia A, Kapoor S (2007) Bioinoculants: a step towards sustainable agriculture. New India Publishing, Pitam Pura, New Delhi, pp V, 306

    Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 11. Springer, Dordrecht

    Chapter  Google Scholar 

  • Gupta P, Ravi I, Sharma V (2013) Induction of β-1, 3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J Plant Interact 8(2):155–161

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Han HS, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    Article  CAS  Google Scholar 

  • Hassen AI, Bopape F, Sanger L (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 23–36

    Chapter  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hermary H (2007) Effects of some synthetic fertilizers on the soil ecosystem. pp 1–6

    Google Scholar 

  • Herridge D, Gemell G, Hartley E (2002) Legume inoculants and quality control. Australian Centre for International Agricultural Research Proceedings 109c, pp 105–115

    Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Atieno M, Brau L, Lesueur D (2015) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: De Bruijn Frans J (ed) Biological nitrogen fixation, vol 2. Wiley, Hoboken, pp 1031–1040

    Chapter  Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities 1. Botany 92(4):267–275

    Article  Google Scholar 

  • Hutchens E, Valsami-Jones E, Mceldowney S, Gaze W, Mclean J (2003) The role of heterotrophic bacteria in feldspar dissolution–an experimental approach. Mineralog Mag 67(6):1157–1170

    Article  CAS  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46(3):199–213

    Article  CAS  Google Scholar 

  • Jain P, Khichi DS (2014) Phosphate solubilizing microorganism (PSM): an eco-friendly biofertilizer and pollution manager. J Dyn Agric Res 1(4):23–28

    Google Scholar 

  • James E (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65(2–3):197–209

    Article  Google Scholar 

  • Jenkins T, Jenkins V (2005) The future of phosphorus in agriculture and the environment. The 1st International Congress of Ecologists, University of Business Studies, Banja Luka, Bosnia and Herzegovina, pp 1481–1497

    Google Scholar 

  • Jiang C-y, Sheng X-f, Qian M, Wang Q-y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Jiao H, Luo J, Zhang Y, Xu S, Bai Z, Huang Z (2015) Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants. Pak J Pharm Sci 28(5):1881–1886

    PubMed  Google Scholar 

  • Johri BN, Sharma A, Virdi J (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89

    CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoğlu Ş, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22(10):1061–1064

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    Article  CAS  Google Scholar 

  • Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions-the role of rhizobia. Oikos 118(4):634–640

    Article  Google Scholar 

  • Khan MZA (2014) Microbiological solution to environmental problems – a review on bioremediation. Int J Pure App Biosci 2(6):295–303

    Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I-J (2016a) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  CAS  Google Scholar 

  • Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Doty SL (2016b) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47

    Article  Google Scholar 

  • Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Kox MA, Jetten MS (2015) The nitrogen cycle principles of plant-microbe interactions. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Berlin, pp 205–214

    Google Scholar 

  • Krasilinikov N (1957) On the role of soil micro-organism in plant nutrition. Microbiologiya 26:659–672

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey R, Maheshwari D, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Article  Google Scholar 

  • Kumar A, Biswas T, Singh N, Lal E (2014) Effect of Gibberellic acid on growth, quality and yield of tomato (Lycopersicon esculentum Mill.). J Agric Vet Sci 7(4):28–30

    Google Scholar 

  • Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J (2016) The production and potential of biofertilizers to improve crop yields. In: Arora N, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 71–92

    Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29(1):1–6

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi N, Olsen P, Sande E, Keyser H, Collins M, Singleton P, Rice W (2000) Inoculant quality and its evaluation. Field Crops Res 65(2–3):259–270

    Article  Google Scholar 

  • Ma W, Ma L, Li J, Wang F, Sisák I, Zhang F (2011) Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere 84(6):814–821

    Article  CAS  PubMed  Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2(10)

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 17–40

    Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28(8):361–370

    Article  PubMed  CAS  Google Scholar 

  • Mathew A, Eberl L, Carlier AL (2014) A novel siderophore-independent strategy of iron uptake in the genus Burkholderia. Mol Microbiol 91(4):805–820

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Meena VS, Maurya B, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347

    Article  CAS  PubMed  Google Scholar 

  • Megali L, Schlau B, Rasmann S (2015) Soil microbial inoculation increases corn yield and insect attack. Agron Sustainable Dev 35(4):1511–1519

    Article  Google Scholar 

  • Mirza BS, Rodrigues JL (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78(16):5542–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi K (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2(1):80–85

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7(5):307–316

    Google Scholar 

  • Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez L, Bustillos-Cristales M et al (2017) Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 12(11):e0187913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhuba M, Roopnarain A, Adeleke R, Moeletsi M, Makofane R (2018) Comparative assessment of bio-fertiliser quality of cow dung and anaerobic digestion effluent. Cogent Food Agric 4(1):1435019

    Google Scholar 

  • Mulongoy K, Gianinazzi S, Roger P-A, Dommergues Y (1992) Biofertilizers: agronomic and environmental impacts and economics. In: Da Silva EJ, Ratledge C, Sasson A (eds) Biotechnology: economic and social aspects. Issues for developing countries. Cambridge University Press, Cambridge, pp 55–69

    Chapter  Google Scholar 

  • N2Africa (2015) N2Africa revitalizes legume production in Nigeria. IITA Research to Nourish Africa (06/01/2016)

    Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndakidemi PA, Bambara S, Makoi JH (2011) Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by Rhizobium inoculation, and the Supply of Molybdenum and Lime. Plant Omics 4(1):40

    CAS  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure and function. Annu Rev Microbiol 64:43–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’hara G, Yates R, Howieson J (2002) Selection of strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings

    Google Scholar 

  • Ohyama T, Momose A, Ohtake N, Sueyoshi K, Sato T, Nakanishi Y, Ando S (2014) Nitrogen fixation in sugarcane. Advances in biology and ecology of nitrogen fixation. pp 47–70

    Chapter  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Alves V, Marriel I, Gomes E, Scotti M, Carneiro N, Guimaraes C, Schaffert R, Sa N (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41(9):1782–1787

    Article  CAS  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Demidoff A, Collins MM (1996) Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 42(1):72–75

    Article  CAS  PubMed  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda SP, Mishra CSK (2007) Bioremediation of environmental degradation a feasible option for ecorestoration. In: Environmental biotechnology. APH Publishing Corporation, New Delhi, pp 153–164

    Google Scholar 

  • Parani K, Saha B (2012) Prospects of using phosphate solubilizing Pseudomonas as bio fertilizer. Eur J Biol Sci 4(2):40–44

    Google Scholar 

  • Parmar P, Sindhu S (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel N, Patel Y, Pandya H (2014) Bio fertilizer: a promising tool for sustainable farming. IJIRSET 3(9):15838, 15842

    Article  Google Scholar 

  • Pathak DV, Kumar M, Rani K (2017) Microorganisms for green revolution. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microbes for sustainable crop production, vol 1. Springer Nature, Singapore

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peoples M, Brockwell J, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17

    Article  CAS  Google Scholar 

  • Pérombelon M (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51(1):1–12

    Article  Google Scholar 

  • Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40(10):2042–2067

    Article  CAS  PubMed  Google Scholar 

  • Pindi PK, Satyanarayana S (2012) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopestic 03(04)

    Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek 104(3):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimi A, Adeleke R (2018) Quality assessment of commercial biofertilisers and the awareness of smallholder farmers in Gauteng province, South Africa. Masters Dissertation, University of South Africa, South Africa

    Google Scholar 

  • Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3:1–26

    Google Scholar 

  • Rascio N, Rocca NL (2013) Biological nitrogen fixation. In: Reference module in earth systems and environmental sciences. Encyclopedia of ecology. https://doi.org/10.1016/b978-0-12-409548-9.00685-0

    Google Scholar 

  • Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Reddy L, Giller K (2008) How effective are effective micro-organisms. LEISA Magazine 24:18–19

    Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Evol Microbiol 43(3):574–584

    Google Scholar 

  • Reis VM, Teixeira KRDS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55(8):931–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Curá JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25(2):175–185

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea J-M, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261

    Article  CAS  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566

    PubMed  Google Scholar 

  • Roy R, Finck A, Blair G, Tandon H (2006) Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertil Plant Nutr Bull 16:368

    Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3(4):e2073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  PubMed  Google Scholar 

  • Sangeeth K, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. JOSAC 21(2):118–124

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49(10):1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Saha M, Meena VS (2017) Plant Beneficial Rhizospheric Microbes (PBRMs): prospects for increasing productivity and sustaining the resilience of soil fertility. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 3–29

    Chapter  Google Scholar 

  • Sayyed R, Gangurde N, Patel P, Joshi S, Chincholkar S (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol 9:302–307

    CAS  Google Scholar 

  • Sayyed RZ, Reddy MS, Vijay Kumar K, Yellareddygari SKR, Deshmukh AM, Patel PR, Gangurde NS (2012) Potential of plant growth-promoting rhizobacteria for sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 287–293

    Chapter  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8:2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79(1):147–155

    Article  CAS  PubMed  Google Scholar 

  • Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol mechanisms of siderophores against bacterial plant pathogens. In: Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, pp 182–205

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their ole as competent biofertilizers. IJCMAS 3:622–629

    Google Scholar 

  • Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Sharma M, Ghosh R, Telangre R, Rathore A, Saifulla M, Mahalinga DM, Saxena DR, Jain YK (2016) Environmental influences on pigeonpea-Fusarium udum interactions and stability of genotypes to Fusarium wilt. Front Plant Sci 7:253

    PubMed  PubMed Central  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922

    Article  CAS  Google Scholar 

  • Shridhar BS (2012) Review: Nitrogen fixing microorganisms. Microbiol Res J Int 3(1):46–52

    Google Scholar 

  • Sickerman NS, Hu Y, Ribbe MW (2017) Nitrogenase assembly: strategies and procedures. Methods Enzymol 595:261–302

    Article  PubMed  Google Scholar 

  • Singh DP, Singh HB, Prabha R (2016) Book review: Microbial inoculants in sustainable agricultural productivity (vol 2). Functional application. Front Microbiol 7:2105

    PubMed Central  Google Scholar 

  • Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7(5):315

    Article  PubMed  PubMed Central  Google Scholar 

  • Smaling E, Roscoe R, Lesschen J, Bouwman A, Comunello E (2008) From forest to waste: assessment of the Brazilian soybean chain, using nitrogen as a marker. Agric Ecosyst Environ 128(3):185–197

    Article  CAS  Google Scholar 

  • Solaiman ZM, Anawar HM (2015) Rhizosphere microbes interactions in medicinal plants. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Soil biology, vol 42. Springer, Cham, pp 19–41

    Chapter  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Technol 22(2):203–217

    Article  Google Scholar 

  • Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2(4):106

    Google Scholar 

  • Somasegaran P, Hoben HJ (2012) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media, New York

    Google Scholar 

  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens J, Rask H (2000) Inoculant production and formulation. Field Crops Res 65(2–3):249–258

    Article  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77(1):43–49

    Article  Google Scholar 

  • Suyal DC, Soni R, Sai S, Goel R (2016) Microbial inoculants as biofertilizer. In: Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, pp 311–318

    Google Scholar 

  • Swain H, Abhijita S (2013) Nitrogen fixation and its improvement through genetic engineering. J Global Biosci 2:98–112

    Google Scholar 

  • Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56(2):103–110

    CAS  PubMed  Google Scholar 

  • Szilagyi-Zecchin VJ, Mógor ÁF, Figueiredo GGO (2016) Strategies for characterization of agriculturally important bacteria. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 1–3

    Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, Gao X (2017) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakuria D, Talukdar N, Goswami C, Hazarika S, Boro R, Khan M (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86(7):978–985

    Google Scholar 

  • Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341(1–2):209–219

    Article  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:1–11

    Article  Google Scholar 

  • Transparency Market Research (2014) Biofertilizers (Nitrogen fixing, phosphate solubilizing and others) Market for seed treatment and soil treatment applications – Global industry analysis, size, share, growth, trends and forecast, 2013–2019. Transpareny Market Research, Albany, NY

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability–a review. Molecules 21(5):573

    Article  PubMed Central  CAS  Google Scholar 

  • Verma A, Kukreja K, Pathak D, Suneja S, Narula N (2001) In vitro production of plant growth regulators (PGRs) by Azotobacter chroococcum. Indian J Microbiol 41(4):305–307

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Villegas MDC, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Brunel B (2006) Nitrogen-fixing Sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 29(7):526–538

    Article  CAS  Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Wallace MB, Knausenberger WI (1997) Inorganic fertilizer use in Africa: environmental and economic dimensions. Environmental and Natural Resources Policy and Training (EPAT) Project Applied Research, Technical Assistance and Training Winrock International Environmental Alliance Arlington. Virginia, USA. http://hdl.handle.net/10919/68427

  • Wang C-J, Yang W, Wang C, Gu C, Niu D-D et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Liu M-Q, Li H-X (2014) Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil. Acta Agric Scand B 64(3):252–259

    CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(1):487–511

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ, Wang HQ, Wang ET, Chen WX, Tian CF (2011) Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. and Zucc.) in different ecoregions of China. FEMS Microbiol Ecol 76(3):439–450

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28(9):845–870

    Article  CAS  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HM, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zalewska M, Antkowiak M (2013) Gibberellic acid effect on growth and flowering of Ajania Pacifica/Nakai/Bremer et Humphries. J Hort Res 21(1):21–27

    CAS  Google Scholar 

  • Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci 3:197–225

    Article  PubMed  Google Scholar 

  • Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, Dong J (2017) Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front Microbiol 8:2032

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the National Research Foundation (NRF) and the Department of Agriculture, Forestry and Fisheries (DAFF) for funding our inoculant research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed A. Adeleke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeleke, R.A., Raimi, A.R., Roopnarain, A., Mokubedi, S.M. (2019). Status and Prospects of Bacterial Inoculants for Sustainable Management of Agroecosystems. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_7

Download citation

Publish with us

Policies and ethics