Skip to main content

Tunable Plasmonic Properties of Nanoshells

  • Chapter
  • First Online:
  • 583 Accesses

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

In this chapter, tunable plasmonic properties of multilayer spherical nanoshells based on quasi static approach and plasmon hybridization theory are investigated. The bimetallic nanoshells with three intensive plasmon resonances could be used as excellent replacement for monometallic nanoshell, with double plasmon resonances, in sensing applications based on surface enhanced Raman scattering (SERS), because the Raman scattering could be greatly enhanced at plasmon resonances. The plasmon resonance peaks in bimetallic nanoshells are optimized by tuning the geometrical parameters. In addition, the optimal geometry is discussed to obtain the Raman enhancement factor in bimetallic multilayer nanoshell. SERS enhancement factor is calculated with consideration of dampings due to both the electron scattering and the radiation at the boundary and modified Drude model in dielectric function of bimetallic nanoshell. Beyond the geometrical parameters, the refractive index of surrounding medium can also affect the plasmon resonance of the bimetallic nanoshells. Any variation in blood concentration and oxygen level can be detected by these bimetallic nanoshells with high sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brongersma ML (2003) Nanoshells: gifts in a gold wrapper. Nat Mater 2:296–297

    Article  CAS  PubMed  Google Scholar 

  2. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to wave guiding. Nat Photon 1:3641–3648

    Article  CAS  Google Scholar 

  3. Goh D, Gong T, Dinish US, Maiti KK, Fu CY, Young KT, Olivo M, Triblock P (2012) Pluronic triblock copolymer encapsulated gold nanorods as biocompatible localized plasmon resonance-enhanced scattering probes for dark-field imaging of cancer cells. Plasmonics 7:595–601

    Article  CAS  Google Scholar 

  4. Khlebtsov B, Khanadeev V, Khlebtsov N (2010) Tunable depolarized light scattering from gold and gold/silver nanorods. Phys Chem 12:3210–3218

    CAS  Google Scholar 

  5. Dong J, Qu S, Zhang Z, Liu M, Liu G, Yan X, Zheng H (2012) Surface enhanced fluorescence on three dimensional silver nanostructure substrate. J Appl Phys 111:093101–093104

    Article  CAS  Google Scholar 

  6. Kumar S, Goel P, Singh DP, Singh JP (2014) Highly sensitive superhydrophobic Ag nanorods array substrates for surface enhanced fluorescence studies. Appl Phys Lett 104:023107–023110

    Article  CAS  Google Scholar 

  7. Wen X, Zhang Q, Chai J, Wong LM, Wang S, Xiong Q (2014) Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering. Opt Express 22:2989–2995

    Article  PubMed  Google Scholar 

  8. Ma WY, Wu ZW, Zhang LH, Zhang J, Jian GS, Pan S (2013) Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters. Plasmonics 8:1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang YJ, Gao WT, Yang S, Liu SS, Zhao XY, Gao M, Wang YX, Yang H (2013) Nanogaps in 2D Ag-nanocap arrays for surface enhanced Raman scattering. J Raman Spectrosc 44:1666–1670

    Article  CAS  Google Scholar 

  10. Yi MF, Zhang DG, Wen XL, Fu Q, Wang P, Lu YH, Ming H (2011) Fluorescence enhancement caused by plasmonic coupling between silver nanocubes and silver film. Plasmonics 6:213–217

    Article  CAS  Google Scholar 

  11. Acevedo R, Lomardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113:13173–13183

    Article  CAS  PubMed  Google Scholar 

  12. Politano A, Chiarello G (2015) The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films. Prog Surf Sci 90:144–193

    Article  CAS  Google Scholar 

  13. Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  14. Willets KA (2012) Probing local electromagnetic field enhancements on the surface of plasmonic nanoparticles. Prog Surf Sci 87:209–220

    Article  CAS  Google Scholar 

  15. Enriquez AC, Rivero Espejel IA, Andrés García E, Diaz-García ME (2008) Enhanced resonance light scattering properties of gold nanoparticles due to cooperative binding. Anal Bioanal Chem 391:807–815

    Article  CAS  Google Scholar 

  16. He J, Fan C, Wang J, Ding P, Cia G, Cheng Y, Zhu S, Liang E (2013) A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance. J Opt 15:025007–025014

    Article  CAS  Google Scholar 

  17. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  PubMed  Google Scholar 

  18. Chau YF, Chen MW, Tsai DP (2009) Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod. Appl Opt 48:617–622

    Article  CAS  PubMed  Google Scholar 

  19. Sung MJ, Ma YF, Chau YF, Huang DW (2010) Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm. Appl Opt 49:6295–6301

    Article  CAS  PubMed  Google Scholar 

  20. Lin J, He W, Vilayurganapathy S, Peppernick SJ, Wang B, Palepu S, Remec M, Hess WP, Hmelo AB, Pantelides ST, Dickerson JH (2013) Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films. ACS Appl Mater Interf 5:11590–11596

    Article  CAS  Google Scholar 

  21. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252

    Article  CAS  PubMed  Google Scholar 

  22. Charles DE, Aherne D, Gara M, Ledwith DM, Gun’ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 4:55–64

    Google Scholar 

  23. Chirumamilla M, Gopalakrishnan A, Toma A, Zaccaria RP, Krahne R (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303–235311

    Article  CAS  PubMed  Google Scholar 

  24. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  PubMed  Google Scholar 

  25. Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263

    Article  CAS  PubMed  Google Scholar 

  26. He W, Vilayurganapathy S, Joly AG, Droubay TC, Chambers SA, Maldonado JR, Hess WP (2013) Comparison of CsBr and KBr coated Cu photocathodes: effects of laser irradiation and work function changes. Appl Phys Lett 102:071604–071608

    Article  CAS  Google Scholar 

  27. Polyakov A, Senft C, Thompson KF, Feng J, Cabrini S, Schuck PJ, Padmore HA, Peppernick SJ, Hess WP (2013) Plasmon-enhanced photocathode for high brightness and high repetition rate X-Ray sources. Phys Rev Lett 110:076802–076806

    Google Scholar 

  28. Oldenburg S, Jackson J, Westcott S, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899

    Article  CAS  Google Scholar 

  29. Shirzaditabar F, Saliminasab M (2013) Optimization of SDS nanoshell for sensing applications. Phys Plasmas 20:082112–082116

    Article  CAS  Google Scholar 

  30. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Agcore Aushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006

    Article  CAS  PubMed  Google Scholar 

  31. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56:150–154

    Article  CAS  Google Scholar 

  32. Lin AW, Lewinski NA, West JL, Halas NJ, Drezek RA (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10:064035–064044

    Article  CAS  PubMed  Google Scholar 

  33. Cheng FY, Chen CT, Yeh CS (2009) Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology 20:425104–425112

    Article  CAS  PubMed  Google Scholar 

  34. Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16:1590–1599

    Article  CAS  PubMed  Google Scholar 

  35. Shirzaditabar F, Saliminasab M, Arghavani Nia B (2014) Triple plasmon resonance of bimetal nanoshell. Phys Plasmas 21:072102–072105

    Article  CAS  Google Scholar 

  36. Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y (2012) A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosensing Bioelectrics 38:94–99

    Article  CAS  Google Scholar 

  37. Afkhami Garaei M, Saliminasab M, Nadgaran H, Moradian R (2016) A hybrid plasmonic bimetallic nanoshell-microsphere sensor for cancer market protein detection. Plasmonics. https://doi.org/10.1007/s11468-016-0467-z

    Article  Google Scholar 

  38. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  39. Qian J, Wang WD, Li YD, Xu JJ, Sun Q (2012) Optical extinction properties of perforated gold-silica-gold multilayer nanoshells. J Phys Chem C 116:10349–10355

    Article  CAS  Google Scholar 

  40. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  PubMed  Google Scholar 

  41. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  PubMed  Google Scholar 

  42. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrate. Nano Lett 5:1569–1574

    Article  CAS  PubMed  Google Scholar 

  43. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  44. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  45. Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys 73:3023–3037

    Article  CAS  Google Scholar 

  46. Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  47. Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746

    Article  CAS  Google Scholar 

  48. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39:433–450

    Article  CAS  Google Scholar 

  49. Kim JH, Bryan WW, Randall Lee T (2006) Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir 24:11147–11152

    Article  CAS  Google Scholar 

  50. Kang H, Yang JK, Noh MS, Jo A, Jeong S, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH, Lee YS (2014) One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B 28:4415–4421

    Article  Google Scholar 

  51. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, Garcıá de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Google Scholar 

  52. Zhi Y, Manchee CPK, Silverstone JW, Zhang Z, Meldrum A (2013) Refractometric sensing with silicon quantum dots coupled to a microsphere. Plasmonics 8:71–78

    Article  CAS  Google Scholar 

  53. Quan H, Guo Zh (2005) Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. J Quant Spectrosc Radiant Transfer 93:231–243

    Article  CAS  Google Scholar 

  54. Heebner J, Grover R, Ibrahim T (2008) Optical microresonator: theory, fabrication and applications. Springer Series in optical sciences. Springer, Berlin

    Google Scholar 

  55. Vahala KJ (2003) Review article optical microcavities. Nature 424:839–846

    Article  CAS  PubMed  Google Scholar 

  56. Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21:453–455

    Article  CAS  PubMed  Google Scholar 

  57. Vollmer F, Arnold S, Keng D (2008) Single virus detection from the reactive shift of a whispering-gallery. Mode Proc Natl Acad Sci USA 105:20701–20704

    Google Scholar 

  58. Spillane SM, Kippenberg TJ, Vahala KJ (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415:621–623

    Article  CAS  PubMed  Google Scholar 

  59. Maier SA (2007) Plasmonic: fundamental and applications. Springer, New York

    Book  Google Scholar 

  60. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832

    Article  CAS  Google Scholar 

  61. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  62. Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Metal Phys 4:999–1014

    Article  CAS  Google Scholar 

  63. Gildenburg VB, Kostin VA, Pavlichenko IA (2011) Resonances of surface and volume plasmons in atomic clusters. Phys Plasmas 18:092101–092106

    Article  CAS  Google Scholar 

  64. Hovel H, Fritz S, Hilger A, Kreibig U (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188

    Article  CAS  Google Scholar 

  65. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  66. Geometrical parameters effects on local electric field enhancement of SDS multilayer nanoshell. Phys Plasmas 20:052109 (2013)

    Google Scholar 

  67. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  68. Shirzaditabar F, Saliminasab M (2013) Optimization of silver-dielectric-silver nanoshell for sensing applications. Phys Plasmas 20:082112–082116

    Google Scholar 

  69. Shirzaditabar F, Saliminasab M (2014) Tunable optical properties of silver dielectric silver nanoshell. Int J Mod Phys B 28:1450134–1450145

    Article  CAS  Google Scholar 

  70. Du Y, Chen C, Zhou M, Dong S, Wang E (2011) Microfluidic electrochemical aptameric assay integrated on-chip: a potentially convenient sensing platform for the amplified and multiplex analysis of small molecules. Anal Chem 83:1523–1529

    Article  CAS  PubMed  Google Scholar 

  71. Chakravadhanula VSK, Elbahri M, Schürmann U, Takele H, Greve H, Zaporojtchenko V, Faupel F (2008) Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry. Nanotechnology 19:225302–225306

    Article  CAS  PubMed  Google Scholar 

  72. Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167

    Article  CAS  Google Scholar 

  73. Friebel M, Meinke M (2006) Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 dependent of concentration. Appl Opt 45:2838–2842

    Article  CAS  PubMed  Google Scholar 

  74. Kang H, Yang JK, Noh MS, Jo A, Jeong A, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH (2014) One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B 2:4415–4421

    Google Scholar 

  75. Saliminasab M, Afkhami Garaei M, Moradian R, Nadgaran H (2016) Novel and sensitive core-shell nanoparticles based on surface plasmon resonance. Plasmonics. https://doi.org/10.1007/s11468-016-0495-8

    Article  Google Scholar 

  76. Saliminasab M, Afkhami Garaei M, Moradian R, Nadgaran H (2016) The effect of bumpy structure on optical properties of bimetallic nanoshells. Plasmonics. https://doi.org/10.1007/s11468-016-0355-6

    Article  Google Scholar 

  77. Rudziuk D, Moehwald H (2015) Prospects for plasmonic hot spots in single molecules SERS towards the chemical imaging of live cells. Phys Chem Chem Phys 17:21072–21093

    Article  CAS  Google Scholar 

  78. Moradian R, Saliminasab M (2017) Surface enhanced Raman scattering in tunable bimetallic core-shell. Plasmonics. https://doi.org/10.1007/s11468-017-0614-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Saliminasab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saliminasab, M., Moradian, R., Shirzaditabar, F. (2019). Tunable Plasmonic Properties of Nanoshells. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_6

Download citation

Publish with us

Policies and ethics