Skip to main content

Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application

  • Chapter
  • First Online:

Part of the book series: Reviews in Plasmonics ((RIP,volume 2017))

Abstract

The LSPR properties and field enhancement of metal (Au, Ag and Al) under different nanostructures has been discussed using the Finite-Difference Time-Domain (FDTD) and plasmon hybridization method. Tuning the size, shape and physical environment around metal nanoparticle has maximized the plasmonic sensitivity of metal nanostructure for molecular and biological sensing whereas enhanced near-field gives the basis for the formation of the SERS substrate such that the substrate with extremely high enhancement factor and number of hot spots can be designed and fabricated. The calculated spectra using FDTD method for Au, Ag and Al nanoparticle clearly confirm that the plasmon resonance wavelength of Aluminium nanostructure lies in the shorter wavelength range as compared to Au and Ag but an LSPR sensor based on multilayered nanostructure where the advantages of both plasmonic active metals can be combined has been proposed to improve optical response. The calculated refractive index sensitivity (RIS) factor for multilayered nanostructure follow the order as Ag-Air-Ag > Au-Air-Au > Al-Air-Al and the RIS 510 nm/RIU and 470 nm/RIU for Al-Air-Au and Ag-Air-Au, respectively. The strong enhanced electromagnetic fields near the metal surfaces has been evaluated for isotropic and anisotropic nanostructure. The isotropic configuration shows polarization-dependent higher field enhancement ~1.4 × 108 at 196 nm whereas the anisotropic shape nanorod arranged in a rhombus nanostructure increases the enhancement factor to ~6.5 × 107 at peak wavelength 411 nm, i.e. tuning the plasmon wavelength towards the visible region with Al as plasmonic material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.thebritishmuseum.ac.uk/science/lycurguscup/sr-lycurgus-p3.html. British Museum, 2005

  2. Zenneck J (1907) Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys 328:846

    Article  Google Scholar 

  3. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metalllösungen. Ann Phys 330:377

    Article  Google Scholar 

  4. Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann Phys 333:665

    Article  Google Scholar 

  5. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley Interscience Publication

    Google Scholar 

  6. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267

    Article  CAS  PubMed  Google Scholar 

  7. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  8. Kreibig U, Fragstein CVZ (1969) The limitation of electron mean free path in small silver particles. Physik 224:307

    Article  CAS  Google Scholar 

  9. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 331:189

    Article  CAS  Google Scholar 

  10. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338A

    Article  CAS  Google Scholar 

  11. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793

    Article  CAS  PubMed  Google Scholar 

  12. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977

    Article  CAS  PubMed  Google Scholar 

  13. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007) A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7:3808

    Article  CAS  PubMed  Google Scholar 

  14. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philysophical Mag 4:396

    Article  Google Scholar 

  15. Rayleigh L (1907) Dynamical theory of the grating. Proc Roy Soc (London) A79:399

    Google Scholar 

  16. Kretschmann E, Reather H (1968) Radiative decay of nonradiative surface plasmon excited by light. Z Naturf 23A:2135

    Article  Google Scholar 

  17. Kretschmann E (1971) Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen. Z Phys 241:313

    Article  CAS  Google Scholar 

  18. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398

    Article  CAS  Google Scholar 

  19. Yates AM, Elvin SJ, Williamson DE (1999) The optimization of a murine TNF-α ELISA and the application of the method to other murine cytokines. J Immunoass 20:31

    Article  CAS  Google Scholar 

  20. Tadic SC, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip Miniaturisation Chem Biol 4:563

    Article  CAS  Google Scholar 

  21. Yang J, Eom K, Park J, Kang Y, Yoon DS, Na S, Koh EK, Suh JS, Huh YM, Kwon TY, Haam S (2008) In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir 24:12112

    Article  CAS  PubMed  Google Scholar 

  22. Hong Y, Huh YM, Yoon DS, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J Nanomater 2012

    Google Scholar 

  23. Jia P, Jiang H, Sabarinathan J, Yang J (2013) Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24:195501

    Article  CAS  PubMed  Google Scholar 

  24. Larsson EM, Prinetti A, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256

    Article  CAS  PubMed  Google Scholar 

  25. Lee S, Mayer KM, Hafner JH (2009) Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 81:4450

    Article  CAS  PubMed  Google Scholar 

  26. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe Y, Inami W, Kawata Y (2011) Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission. J Appl Phys 109:023112

    Article  CAS  Google Scholar 

  28. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  29. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1

    Google Scholar 

  30. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215

    Article  CAS  Google Scholar 

  31. Doering WE, Nie SM (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311

    Article  CAS  Google Scholar 

  32. Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenge. Phys Chem Chem Phys 10:6079

    Article  CAS  PubMed  Google Scholar 

  33. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957

    Article  CAS  PubMed  Google Scholar 

  34. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485

    Article  CAS  Google Scholar 

  35. Sekhon JS, Verma SS (2012) Rational selection of nanorod plasmons: materials, size and shape dependence mechanism for optical sensors. Plasmonics 7:453

    Article  CAS  Google Scholar 

  36. Haupt RL, Haupt SE, Aten D (2009) Evaluating the radar cross section of maritime radar reflectors using computational electromagnetic. ACES J 24:403

    Google Scholar 

  37. Dandekar KR, Xu G, Ling H (2003) Computational electromagnetic simulation of smart antenna systems in urban microcellular environments. IEEE Trans Veh Technol 52:733

    Article  Google Scholar 

  38. Zainud-deen SH, Botrosand AZ, Ibrahim MS (2008) Scattering from bodies coated with metamaterial using FDFD method progress in electromagnetic. Prog Electromagn Res B 2:279

    Article  Google Scholar 

  39. Ahmed I, Khoo EH, Kurniawan O, Li EP (2011) Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz-Drude dispersive model. Opt Soc Am B 28:352

    Article  CAS  Google Scholar 

  40. DeVoe H (1964) Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J Chem Phys 41:393

    Google Scholar 

  41. DeVoe H (1965) Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J Chem Phys 43:3199

    Google Scholar 

  42. Smajic J, Hafner C, Raguin L, Tavzarashvili K, Mishrickey M (2009) Comparison of numerical methods for the analysis of plasmonic structures. J Comput Theor Nanosci 6:763

    Article  CAS  Google Scholar 

  43. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equation is isotropic media. IEEE Trans Antennas Propag 14:302

    Article  Google Scholar 

  44. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Norwood, MA

    Google Scholar 

  45. http://www.philiplaven.com/mieplot.html

  46. Blaber MG, Arnoldb MD, Harrisa N, Forda MJ, Cortie MB (2007) Plasmon absorption in nanospheres: a comparison of sodium, potassium, Aluminium, silver and gold. Physica B 394:184

    Article  CAS  Google Scholar 

  47. Hu J, Chen L, Lian Z, Cao M, Li H, Sun W, Tong N, Zeng H (2012) Deep-ultraviolet−blue-light surface plasmon resonance of Al and Al core/Al2O3shell in spherical and cylindrical nanostructures. J Phys Chem C 116:15584

    Article  CAS  Google Scholar 

  48. Wahbeh M (2011) Published thesis: Discrete-Dipole-Approximation (DDA) study of the plasmon resonance in single and coupled spherical silver nanoparticles in various configurations

    Google Scholar 

  49. Thomas R, Kumar J, Swathi RS, Thomas KG (2012) Optical effects near metal nanostructures: towards surface-enhanced spectroscopy. Curr Sci 102:85

    CAS  Google Scholar 

  50. Ekinci Y, Solak HH, Löffler JF (2008) Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys 104:083107

    Article  CAS  Google Scholar 

  51. Sekhon JS, Verma SS (2011) Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 6:311

    Article  CAS  Google Scholar 

  52. Efremov EV, Ariese F, Gooijer C (2008) Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 606:119

    Google Scholar 

  53. West PR, Ishii S, Naik G, Emani N, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795

    Article  CAS  Google Scholar 

  54. Rai A, Park K, Zhou Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10:843

    Article  CAS  Google Scholar 

  55. Katyal J, Soni RK (2014) Localized surface plasmon resonances and refractive index sensitivity of metal-dielectric-metal multilayered nanostructures. Plasmonics 9:1171

    Article  CAS  Google Scholar 

  56. Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res Lett 6:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 4:1323

    Article  CAS  Google Scholar 

  58. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419

    Google Scholar 

  59. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Fei GT, Zhang LD (2011) Plasmon hybridization in coated metallic nanosphere. J Appl Phys 109:054315

    Article  CAS  Google Scholar 

  61. Mattiucci N, D’Aguanno G, Everitt HO, Foreman JV, Callahan JM, Buncick MC, Bloemer MJ (2012) Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating. Opt Express 20:1868

    Article  PubMed  Google Scholar 

  62. Foteinopoulou S, Vigneron JP, Vandenbem C (2007) Optical near-field excitations on plasmonic nanoparticle-based structures. Opt Express 15:4253

    Article  CAS  PubMed  Google Scholar 

  63. Mitsushioa M, Watanabeb K, Abeb Y, Higoa M (2010) Sensor properties and surface characterization of aluminum-deposited SPR optical fibers. Sens Actuators A 163:1

    Article  CAS  Google Scholar 

  64. Sur UK, Chowdhur J (2013) Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience. Curr Sci 105:923

    CAS  Google Scholar 

  65. Bantz KC, Meyer AF, Wittenbergb NJ, Imb H, Kurtulusa O, Leec SH, Lindquistb NC, Ohb SH, Haynesa CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yin X, Fang N, Zhang X, Martini IB, Schwartz BJ (2002) Near-field two-photon nanolithography using an apertureless optical probe. Appl Phys Lett 81:3663

    Article  CAS  Google Scholar 

  67. Jackson JD (1999) Classical electrodynamics. Wiley, New York

    Google Scholar 

  68. Tanabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721

    Article  CAS  Google Scholar 

  69. Chowdhary MH, Ray K, Johnson ML, Gray SK, Pond J, Lakowicz JR (2010) On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing. J Phys Chem C 114:7448

    Article  CAS  Google Scholar 

  70. Liu C, Mi CC, Li BQ (2011) The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications. IEEE Trans Nanotechnol 10:797

    Article  Google Scholar 

  71. Chau YF, Jiang ZH, Li HY, Lin GM, Wu FL, Lin WH (2011) Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog Electromagn Res B 28:183

    Article  Google Scholar 

  72. Acimovic SS, Kreuzer MP, González MU, Quidant R (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3:1231

    Article  CAS  PubMed  Google Scholar 

  73. Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan B, Boriskina SV, Reinhard BM (2011) Optimizing gold nanoparticle cluster configurations (n = 7) for array applications. J Phys Chem C 115:4578

    Article  CAS  Google Scholar 

  75. Pasquale AJ, Reinhard BM, Negro LD (2011) Engineering photonic plasmonic coupling in metal nanoparticle necklaces. ACS Nano 5:6578

    Article  CAS  PubMed  Google Scholar 

  76. Kall M, Xu H, Johansson P (2005) Field enhancement and molecular response in surface enhanced Raman scattering and fluorescence spectroscopy. J Raman Spectrosc 36:510

    Article  CAS  Google Scholar 

  77. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569

    Google Scholar 

  78. Søndergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2010) Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett 10:291

    Article  CAS  PubMed  Google Scholar 

  79. Shalin AS, Sukhov SV, Krasnok AE, Nikitov SA (2014) Plasmonic nanostructures for local field enhancement in the UV region. Photonics Nanostruct Fundam Appl 12:2

    Article  Google Scholar 

  80. Katyal J, Soni RK (2015) Field enhancement around Al nanostructures in UV-NIR region. Plasmonic 10:1729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Katyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katyal, J. (2019). Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application. In: Geddes, C. (eds) Reviews in Plasmonics 2017. Reviews in Plasmonics, vol 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-18834-4_4

Download citation

Publish with us

Policies and ethics