Skip to main content

Agrotechnology as Key Factor in Effective Use of Water on Arable Land

  • Chapter
  • First Online:

Part of the book series: Springer Water ((SPWA))

Abstract

It is indisputable that water is necessary for the food production. Demand for good-quality food puts pressure on the agricultural production. On the other hand, a lack of fresh water has become a serious problem. Southern Europe faces this problem in particular nowadays. One-third of water is consumed in the agricultural sector in Europe (plant production in particular). Agriculture influences the amount of water available, and the quality of water is tightly connected with the intensity of farming and use of crop protection agents and fertilizers. Such a bad fresh water situation in the agriculture will improve or stabilize, if water is used more efficiently (e.g. irrigation) or it is retained in the agricultural land. Suitable agricultural interventions must be made. Climate change has also provoked worse availability and accessibility of water. Water development scenarios, distribution and frequency of precipitation predict the amount of fresh water to be reduced in Europe, and they also predict changes in freshwater distribution from the place and time points of view. If suitable agrotechnological techniques are adopted, and socio-political solutions are supported, water situation will improve significantly, and it will be used more efficiently in the agriculture. More water will be available for the agricultural production, and more water will be kept for the whole agroecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the intergovernmental panel on climate change, vol 2. Cambridge University Press

    Google Scholar 

  2. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, p 151

    Google Scholar 

  3. Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  4. Cílek V, Just T, Sůvová Z et al (2017) Voda a krajina: kniha o životě s vodou a návratu k přirozené krajině. Ilustroval Marie KOHOUTOVÁ. Praha: Dokořán, ISBN 978-80-7363-837-5

    Google Scholar 

  5. Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Change 11(1):151–158

    Article  Google Scholar 

  6. Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Sci Total Environ 408(23):5667–5687

    Article  CAS  Google Scholar 

  7. Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52(2):247–275

    Article  Google Scholar 

  8. Change C, Core Writing Team, Pachauri, RK, Reisinger (2007) A. IPCC, Gene Switzerland, p 104

    Google Scholar 

  9. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, Victor N (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  10. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, De Elia R, Dethloff K (2007) Regional climate projections, climate change, 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the intergovernmental panel on climate change. University Press, Cambridge, ISBN: 978-0-521-88009-1

    Google Scholar 

  11. Audsley E, Trnka M, Sabaté S, Maspons J, Sanchez A, Sandars D, Pearn K (2015) Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation. Clim Change 128(3–4):215–227

    Article  Google Scholar 

  12. Pereira LS (2017) Water, agriculture and food: challenges and issues. Water Resour Manage 31(10):2985–2999

    Article  Google Scholar 

  13. Schröter D, Cramer W, Leemans R, Prentice CI, Araújo MB, Arnell NW, Anne C (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333. https://doi.org/10.1126/science.1115233

    Article  CAS  Google Scholar 

  14. Wille H, Lernoud J (2016) The world of organic agriculture. Statistics and emerging trends 2016. Research Institute of Organic Agriculture FiBL and IFOAM Organics International, pp 1–336

    Google Scholar 

  15. Baumann RA, Hooijboer AEJ, Vrijhoef A, Fraters B, Kotte M, Daatselaar CHG, Bosma JN (2012) Agricultural practice and water quality in the Netherlands in the period 1992–2010

    Google Scholar 

  16. Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukácek R, De Filippi R (2006) Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron 24(2):165–181

    Article  Google Scholar 

  17. Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Academic Press, 699 p. ISBN: 13:987-0-12-369449-2

    Google Scholar 

  18. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, vol 12, no 3. ESA Working paper, FAO, Rome

    Google Scholar 

  19. EEA (2012) Water for agriculture. European Environment Agency, Copenhagen, Denmark, 6 p

    Google Scholar 

  20. Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124

    Article  Google Scholar 

  21. Beranová M, Kubačák A (2010) Dějiny zemědělství v Čechách a na Moravě. Nakl. Libri. ISBN 978-80-7277-113-4

    Google Scholar 

  22. Barker G (2009) The agricultural revolution in prehistory: why did foragers become farmers? Oxford University Press on Demand, 598 p. ISBN 0-19-928109-2

    Google Scholar 

  23. Šarapatka B, Niggli U, Čížková S, Dytrtová K, Fišer B, Hluchý M, Just T, Kučera P, Kuras T, Lyth P, Potočiarová E, Salaš P et al (2008) Zemědělství a krajina—cesty k vzájemnému souladu. Univerzita Palackého v Olomouci, Olomouc, p 271

    Google Scholar 

  24. Foley JA, Monfreda C, Ramankutty N, Zaks D (2007) Our share of the planetary pie. Proc Natl Acad Sci 104(31):12585–12586

    Article  CAS  Google Scholar 

  25. Lutz C, Sanderson WC, Scherbov S (2013) The end of world population growth in 21st century. Routledge, New York, USA, p 335

    Google Scholar 

  26. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  27. Jílková J (2003) Daně, dotace a obchodovatelná povolení-nástroje ochrany ovzduší a klimatu. IREAS, Praha, p 156

    Google Scholar 

  28. Reid VW, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P, Dietz T, Duraiappah KA, Hassan R, Kasperson R, Leemans R, May RM, Mcmichael T(Aj), Pingali P, Samper C, Scholes R, Watson RT, Zakri AH, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB (2005) Ekosystémy a lidský blahobyt, Syntéza, Zpráva hodnocení ekosystémů k miléniu, Přeloženo z publikace. Millennium ecosystem assessment ecosystems and human well-being: synthesis, Praha, ISBN: 80-239-6300-7

    Google Scholar 

  29. Liess M, Schulz R, Berenzen N, Nanko-Drees J, Wogram J (2001) Pflanzenschutzmittel-Belastung und Lebensgemeinschaften in Fließgewässern mit landwirtschaftlich genutztem Umland. Texte, 65, 2001. Technische Universität Braunschweig, Berlin, Germany, 226 p

    Google Scholar 

  30. Moravcová J, Koupilová M, Váchal J, Váchalová R, Pártlová P, Krejča M, Straková J (2008) Vliv zemědělského využití území na jakost vody v důsledku extrémních srážko-odtokových jevů. Littera Scripta 1(2):147–160

    Google Scholar 

  31. Kvítek T, Tippl M (2003) Ochrana povrchových vod před dusičnany z vodní eroze a hlavní zásady protierozní ochrany v krajině. Ústav zemědělských a potravinářských informací, Praha, p 47

    Google Scholar 

  32. Šimek M (2003) Základy nauky o půdě 3. Biologické procesy a cykly prvků. Jihočeská univerzita v Českých Budějovicích, České Budějovice, 151 p

    Google Scholar 

  33. Moudrý jr, J, Moudrý J (2014) Environmental aspects of organic farming. in organic agriculture towards sustainability. InTech. https://doi.org/10.5772/58298

    Google Scholar 

  34. Moudrý J, Bernas J, Konvalina P, Ujj A, Manolov I, Stoeva A, Rembiałkowska E, Stalenga J, Toncea I, Fitiu A, Bucur D, Lacko-Bartošová M, Macák M (2018) Agroecology development in Eastern Europe—Cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability (2071-1050) 10(5)

    Article  Google Scholar 

  35. Šarapatka B, Abrahamova M, Cizkova S, Dotlacil L, Hluchy M, Kren J, Pokorny J (2010) Agroekologie: východiska pro udržitelné zemědělské hospodaření. Bioinstitut. Olomouc, Czech Republic, p 440. ISBN: 978-80-87371-10-7

    Google Scholar 

  36. Gliessman SR (2014) Agroecology: the ecology of sustainable food systems, 3rd edn. CRC press, Florida, USA, p 405, ISBN 9781439895610

    Book  Google Scholar 

  37. Altieri MA (2018) Agroecology: the science of sustainable agriculture. CRC Press

    Google Scholar 

  38. Migliorini P, Galioto F, Chiorri M, Vazzana C (2018) An integrated sustainability score based on agro-ecological and socioeconomic indicators. A case study of stockless organic farming in Italy. Agroecology Sustain Food Syst 1–26

    Google Scholar 

  39. Moudry J, Konvalina P, Kalinova J (2007) Základní principy ekologického zemědělství. Jihočeská univerzita v Českých Budějovicích, Zemědělská fakulta, 40 p

    Google Scholar 

  40. Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  41. Pielke RA Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophy 39(2):151–177. ISSN 8755-1209. Dostupné z: https://doi.org/10.1029/1999rg000072

    Article  Google Scholar 

  42. Ripl W (2003) Water: the bloodstream of the biosphere. Philos Trans R Soc B Biol Sci [online] 358(1440):1921–1934. ISSN 0962-8436. Dostupné z: https://doi.org/10.1098/rstb.2003.1378

    Article  Google Scholar 

  43. Ripl W (1995) Management of water cycle and energy flow for ecosystem control: the energy-transport-reaction (ETR) model. Ecol Model [online] 78(1–2):61–76. ISSN 03043800. Dostupné z: https://doi.org/10.1016/0304-3800(94)00118-2

    Article  Google Scholar 

  44. Kedziora A, Olejnik J (2002) Water balance in agricultural landscape and options for its management by change in plant cover structure of landscape. In: Ryszkowski L (ed) Landscape ecology in agroecosystems management. CRC Press, Boca Raton, London, pp 57–110

    Google Scholar 

  45. Makarieva AM, Gorshkov VG (2006) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci Dis 3(4):2621–2673

    Article  Google Scholar 

  46. Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water [online] 5(4):365. ISSN 1465-6620. Dostupné z: https://doi.org/10.1504/ijw.2010.038729

    Article  Google Scholar 

  47. Makarieva AM, Gorshkov VG, Li BL (2006) Conservation of water cycle on land via restoration of natural closed-canopy forests: implications for regional landscape planning. Ecol Res 21(6):897–906. ISSN 0912-3814. Dostupné z: https://doi.org/10.1007/s11284-006-0036-6

    Article  Google Scholar 

  48. Avissar R, Weaver CP, Werth D, Pielke RA, Rabin, R, Pitman AJ, Dias MAS (2004) The regional climate. In: Vegetation, water, humans and the climate. Springer, Berlin, Heidelberg, pp 21–32

    Chapter  Google Scholar 

  49. Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Noah KC, Diffenbaugh S, Field ChB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Diane A, Pataki E (2008) Protecting climate with forests. Environ Res Lett [online] 3(4):044006. ISSN 1748-9326. Dostupné z: https://doi.org/10.1088/1748-9326/3/4/044006

    Article  Google Scholar 

  50. Pielke RA, Pitman A, Niyogi D, Mahmood R, Mcalpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, De Noblet AN (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisc Rev Clim Change [online] 2(6):828–850. ISSN 17577780. Dostupné z: https://doi.org/10.1002/wcc.144

    Google Scholar 

  51. Pielke RA Sr, Adegoke J, BeltraáN-Przekurat A, Hiemstra CA, Lin J, Nair US, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus B Chem Phys Meteorol 59(3):587–601. ISSN 0280-6509. Dostupné z: https://doi.org/10.1111/j.1600-0889.2007.00251.x

    Article  Google Scholar 

  52. Pokorny J, Brom J, Cermak J, Hesslerova P, Huryna H, Nadezhdina N, Rejskova A (2010) Solar energy dissipation and temperature control by water and plants. Int J Water 5(4):311–336. ISSN 1465–6620. Dostupné z: https://doi.org/10.1504/ijw.2010.038726

    Article  CAS  Google Scholar 

  53. Pokorný J, Rejšková A (2008) Water cycle management. Ecol Eng 5:3729–3737

    Google Scholar 

  54. Tuller MD Or (2005) Water retention and soil water characteristics curve. In: Encyclopedia of soils in the environment, pp 278–284

    Chapter  Google Scholar 

  55. Kirkham MB (2005) Principles of soil and plant water relations. Elsevier Academic Press, Amsterdam; New York. ISBN 978-0-12-409751-3

    Google Scholar 

  56. Kutílek M, Nielsen DR (1994) Soil hydrology: textbook for students of soil science, agriculture, forestry, geoecology, hydrology, geomorphology or other related disciplines. Cremlingen-Destedt: Catena-Verl. GeoEcology textbook. ISBN 978-3-923381-26-5

    Google Scholar 

  57. Jiao J, Su D, Han L, Wang Y (2016) A rainfall interception model for alfalfa canopy under simulated sprinkler irrigation. Water 8(12):585. ISSN 2073-4441. Dostupné z: https://doi.org/10.3390/w8120585

    Article  Google Scholar 

  58. Lamm FR, Manges HL (2000) Partitioning of sprinkler irrigation water by a corn canopy. Trans ASAE 43(4):909

    Article  Google Scholar 

  59. Roth BE, Slatton KC, Cohen MJ (2007) On the potential for high—resolution lidar to improve rainfall interception estimates in forest ecosystems. Front Ecol Environ 5(8):421–428. ISSN 1540-9295. Dostupné z: https://doi.org/10.1890/060119.1

    Article  Google Scholar 

  60. Carlyle-Moses DE, Gash JHC (2011) Rainfall interception loss by forest canopies. In: Levia DF, Carlyle-Moses D, Tanaka T (eds) Forest hydrology and biogeochemistry [online]. Springer Netherlands, Dordrecht, pp 407–423 [vid. 2018-07-11]. ISBN 978-94-007-1362-8. Dostupné z: https://doi.org/10.1007/978-94-007-1363-5_20

    Chapter  Google Scholar 

  61. Kvítek T, Šefrna L, KB, Březina Brom J, Duffková R (2017) Infiltrační oblasti a jejich vliv na vodní režim malých povodí. In: Kvítek T (ed) Retence a jakost vody v povodí vodárenské nádrže Švihov na Želivce. Význam retence vody na zemědělském půdním fondu pro jakost vody a současně i průvodce vodním režimem krystalinika. Praha: Povodí Vltavy, státní podnik, pp 119–130. ISBN 978-80-270-2488-9

    Google Scholar 

  62. Kvítek T, Bílková A, Duffková R, Fučík P, Lexa M, Novák P, Voldřichová AJ (2004) Zásady managementu využívání zón diferencované ochrany trvalými travními porosty v povodí vodárenských nádrží. VÚMOP, v.v.i, Praha. ISBN 978-80-239-3136-5

    Google Scholar 

  63. Duffková R, Brom J, Žížala D, Zemek F, Procházka J, Nováková E, Zajíček A, Kvítek T (2012) Určení infiltračních oblastí pomocí vodního stresu vegetace na základě dálkového průzkumu Země a pozemních měření. Certifikovaná metodika. Praha: VÚMOP, v.v.i. ISBN 978-80-87361-15-3

    Google Scholar 

  64. Franzluebbers AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res [online] 66(2):97–205. ISSN 01671987. Dostupné z: https://doi.org/10.1016/s0167-1987(02)00027-2

    Article  Google Scholar 

  65. Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H (2003) Effect of soil organic carbon on soil water retention. Geoderma 116(1–2):61–76. ISSN 00167061. Dostupné z: https://doi.org/10.1016/s0016-7061(03)00094-6

    Article  CAS  Google Scholar 

  66. Dunne T, Zhang W, Aubry BF (1991) Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour Res [online] 27(9):2271–2285. ISSN 00431397. Dostupné z: https://doi.org/10.1029/91wr01585

    Article  Google Scholar 

  67. Römkens MJM, Helming K, Prasad ASN (2002) Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA [online] 46(2–3):103–123. ISSN 03418162. Dostupné z: https://doi.org/10.1016/s0341-8162(01)00161-8

    Article  Google Scholar 

  68. Strudley MW, Green TR, Ascough II JC (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil Tillage Res 99(1):4–48. ISSN 01671987. Dostupné z: https://doi.org/10.1016/j.still.2008.01.007

    Article  Google Scholar 

  69. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66(2):165–180

    Article  CAS  Google Scholar 

  70. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Cluzeau D (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182. ISSN 13510754. Dostupné z: https://doi.org/10.1111/ejss.12025

    Article  Google Scholar 

  71. Hammel JE, Papendick RI, Campbell GS (1981) Fallow tillage effects on evaporation and seedzone water content in a dry summer climate. Soil Sci Soc Am J 45(6):1016–1022. ISSN 0361-5995. Dostupné z: https://doi.org/10.2136/sssaj1981.03615995004500060003x

    Article  Google Scholar 

  72. Schwartz RC, Baumhardt RL, Evett SR (2010) Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res 110(2):221–229. ISSN 01671987. Dostupné z: https://doi.org/10.1016/j.still.2010.07.015

    Article  Google Scholar 

  73. Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41(4):587–596

    Article  CAS  Google Scholar 

  74. Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production (No. 80). Food and Agriculture Organization of the United Nations. FAO soils bulletin, 80. ISBN 978-92-5-105366-9

    Google Scholar 

  75. Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29(2):189–217. ISSN 0309-1333, 1477-0296. Dostupné z: https://doi.org/10.1191/0309133305pp443ra

    Article  Google Scholar 

  76. Zuazo VHD, Pleguezuelo CRR (2009) Soil-erosion and runoff prevention by plant covers: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture [online]. Springer Netherlands, Dordrecht, pp 785–811 [vid. 2018-07-31]. ISBN 978-90-481-2665-1. Dostupné z: https://doi.org/10.1007/978-90-481-2666-8_48

    Chapter  Google Scholar 

  77. Nadezhdina N, Steppe K, De Pauw DJ, Bequet R, Čermak J, Ceulemans R (2009) Stem‐mediated hydraulic redistribution in large roots on opposing sides of a Douglas‐fir tree following localized irrigation. New Phytol 184(4):932–943. ISSN 0028646X. Dostupné z: https://doi.org/10.1111/j.1469-8137.2009.03024.x

    Article  Google Scholar 

  78. ČUZK (2013) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, Praha

    Google Scholar 

  79. Havel P (2011) Nevhodná struktura plodin se prohlubuje—co s tím? Asociace soukromého zemědělství ČR [online] [vid. 2013-05-21]. Dostupné z: http://www.asz.cz/cs/aktualne-z-asz/nevhodna-struktura-plodin-se-prohlubuje-co-s-tim.html

  80. Škoda V (2001) Význam osevních postupů v současné době. Úroda [online] [vid. 2013-05-21]. Dostupné z: http://www.uroda.cz/@AGRO/informacni-servis/Vyznam-osevnich-postupu-v-soucasne-dobe__s457x10585.html

  81. Le Bissonnais YL (1996) Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci 47(4):425–437. ISSN 13510754. Dostupné z: https://doi.org/10.1111/j.1365-2389.1996.tb01843.x

    Article  Google Scholar 

  82. Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Soil Res 44(4):379–406. ISSN 0004-9573. Dostupné z: https://doi.org/10.1071/sr05125

  83. ČSÚ (2013) Zemědělství - časové řady. Český statistický úřad, Praha. Český statistický úřad, Praha [online] [vid. 2013-05-21]. Dostupné z: http://www.czso.cz/csu/redakce.nsf/i/zem_cr

  84. ČUZK (2012) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, Praha

    Google Scholar 

  85. ČUZK (2011) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, Praha

    Google Scholar 

  86. ČUZK (2010) Souhrnné přehledy o půdním fondu z údajů Katastru nemovitostí České republiky. Český úřad zeměměřičský a katastrální, Praha

    Google Scholar 

  87. Stibinger J, Kulhavý AZ (2010) Úpravy vodního režimu půd odvodněním. Monografie, uživatelský výstup projektu 2B06022. Praha: Česká zemědělská univerzita v Praze, Výzkumný ústav meliorací a ochrany půdy, v.v.i. ISBN 978-80-213-2132-8

    Google Scholar 

  88. Vašků Z (2011) Zlo zvané meliorace. Vesmír 90(7–8):440–444

    Google Scholar 

  89. Tlapák V, Šálek J, Legát V (1992) Voda v zemědělské krajině. Brázda, Ministerstvo životního prostředí České republiky, Praha. ISBN 80-209-0232-5

    Google Scholar 

  90. Chloupek O, Hrstková P, Schweigert P (2004) Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crops Res 85(2–3):167–190

    Article  Google Scholar 

  91. Brovkina O, Zemek F, Novotný J, Heřman M, Štěpánek P (2017) Analysing changes in land cover in relation to environmental factors in the districts of Znojmo and Třebíč (Czech Republic). Eur J Environ Sci 7(2):108–118

    Article  Google Scholar 

  92. Střeštík J (2013) Character of precipitation during the last 200 years in Prague Klementinum and their impact on water management in the landscape. In: Rožnovský J, Litschmann T, Středová H, Středa T (eds) Voda, půda a rostliny. Křtiny, 29. 30.5. 2013, ISBN 978-80-87577-17-2

    Google Scholar 

  93. Trnka M, Brazdil R, Balek J, Semerádová D, Hlavinka P et al (2015) Drivers of the soil moisture trends in the Czech Republic between 1961 and 2012. In: Trnka M, Hayes MT (eds) Evaluation of drought impacts through interdisciplinary methods. Global Change Research Centre AS CR

    Google Scholar 

  94. Štolbová M et al (2008) Eligibility criteria for less-favoured areas payments in the EU countries and the position of the czech republic. ZEMEDELSKA EKONOMIKA-PRAHA 54(4):166

    Google Scholar 

  95. Eitzinger J, Trnka M, Semerádová D, Thaler S, Svobodová E, Hlavinka P, Dubrovský M (2013) Regional climate change impacts on agricultural crop production in Central and Eastern Europe–hotspots, regional differences and common trends. J Agric Sci 151(6):787–812

    Article  Google Scholar 

  96. Übelhör A, Gruber S, Claupein W (2014) Influence of tillage intensity and nitrogen placement on nitrogen uptake and yield in strip-tilled white cabbage (Brassica oleracea convar. capitata var. alba). Soil Tillage Res 144:156–163

    Article  Google Scholar 

  97. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460

    Article  CAS  Google Scholar 

  98. Rosenthal WD, Kanemasu ET, Raney RJ, Stone LR (1977) Evaluation of an evapotranspiration model for corn 1. Agron J 69(3):461–464

    Article  Google Scholar 

  99. Zhang X, Chen S, Liu M, Pei D, Sun H (2005) Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J 97(3):783–790

    Article  Google Scholar 

  100. Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in the Mediterranean region: review and analysis. Eur J Agron 28(4):493–507

    Article  Google Scholar 

  101. Vadez V, Kholová J, Medina S, Kakkera A, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65(21):6141–6153

    Article  CAS  Google Scholar 

  102. Kang S, Hu X, Du T, Zhang J, Jerie P (2003) Transpiration coefficient and ratio of transpiration to evapotranspiration of pear tree (Pyrus communis L.) under alternative partial root-zone drying conditions. Hydrol Process 17(6):1165–1176

    Article  Google Scholar 

  103. Martin B, Ruiz-Torres NA (1992) Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol 100(2):733–739

    Article  CAS  Google Scholar 

  104. Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153(3):449–460

    Article  CAS  Google Scholar 

  105. Hamdy A, Ragab R, Scarascia-Mugnozza E (2003) Coping with water scarcity: water saving and increasing water productivity. Irrig Drainage 52(1):3–20

    Article  Google Scholar 

  106. Comstock JP, McCouch SR, Martin BC, Tauer CG, Vision TJ, Xu Y, Pausch RC (2005) The effects of resource availability and environmental conditions on genetic rankings for carbon isotope discrimination during growth in tomato and rice. Funct Plant Biol 32(12):1089–1105

    Article  CAS  Google Scholar 

  107. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, vol 300, no 9. Fao, Rome, p D05109

    Google Scholar 

  108. Araus JL, Villegas D, Aparicio N, Del Moral LF, El Hani S, Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43(1):170–180

    Article  Google Scholar 

  109. Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15(4):267–280

    Article  Google Scholar 

  110. Pierce FJ, Fortin MC, Staton MJ (1992) Immediate and residual effects of zone-tillage in rotation with no-tillage on soil physical properties and corn performance. Soil Tillage Res 24(2):149–165

    Article  Google Scholar 

  111. Wang LF, Shangguan ZP (2015) Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Sci Rep 5:12225

    Article  CAS  Google Scholar 

  112. Pala M, Ryan J, Zhang H, Singh M, Harris HC (2007) Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric Water Manage 93(3):136–144

    Article  Google Scholar 

  113. Doorenbos J, Pruitt WO (1977) Crop water requirement: food and agriculture organization of the United Nations. FAO Irrigation and Drainage Paper 24, revised 1977, Rome

    Google Scholar 

  114. Boland AM, Mitchell PD, Jerie PH, Goodwin I (1993) The effect of regulated deficit irrigation on tree water use and growth of peach. J Hortic Sci 68(2):261–274

    Article  Google Scholar 

  115. Hůla J, Procházková B (2008) Minimalizace zpracování půdy. Profi Press, p 248. ISBN: 978-80-86726-28-1

    Google Scholar 

  116. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr Ecosyst Environ 93(1–3):1–24

    Article  Google Scholar 

  117. Wezel A, Goette J, Lagneaux E, Passuello G, Reisman E, Rodier C, Turpin G (2018) Agroecology in Europe: Research, education, collective action networks, and alternative food systems. Sustainability 10(4):1214

    Article  Google Scholar 

  118. Kvítek T (2005) Uplatnění systému alternativního managementu ochrany půdy a vody v krajině. VÚMOP, Praha, 90 p. ISBN: 80-239-5350-8

    Google Scholar 

  119. Gordon AM, Newman SM, Coleman B (eds) (2018) Temperate agroforestry systems. CABI, Wallingford, U. K

    Google Scholar 

  120. Hill RL, Horton R, Cruse RM (1985) Tillage effects on soil water retention and pore size distribution of two mollisols 1. Soil Sci Soc Am J 49(5):1264–1270

    Article  Google Scholar 

  121. Lipiec J, Kuś J, Słowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89(2):210–220

    Article  Google Scholar 

  122. Lal R (2017) Soil erosion by wind and water: problems and prospects. In: Soil erosion research methods. Routledge, pp 1–10

    Google Scholar 

  123. Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103(1):1–25

    Article  Google Scholar 

  124. Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57(1):200–210

    Article  Google Scholar 

  125. Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87(1):19–27

    Article  Google Scholar 

  126. Bertrand M, Barot S, Blouin M, Whalen J, De Oliveira T, Roger-Estrade J (2015) Earthworm services for cropping systems. A review. Agron Sustain Dev 35(2):553–567

    Article  CAS  Google Scholar 

  127. Briones MJI, Schmidt O (2017) Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob Change Biol 23(10):4396–4419

    Article  Google Scholar 

  128. Ashworth AJ, Allen FL, Wight JP, Saxton A, Tyler DD, Sams CE (2014) Soil organic carbon sequestration rates under crop sequence diversity, bio-covers, and no-tillage. Soil Sci Soc Am J 78(5):1726–1733

    Article  CAS  Google Scholar 

  129. Popa A, Stoian G, Popa G, Ouatu O (1984) Soil erosion control on arable land (in Romanian). Ceres, Bucharest, Romania

    Google Scholar 

  130. Savu P, Tomita O (1986) Contributions to the study of surface runoffs on sloping land in nordul Moldavia Plain (in Romanian). Cercetari Agronomice Moldova 25(2):121–126

    Google Scholar 

  131. Ionescu V, (1987) Soil erosion control (in Romanian), Tehnica Publishing house, Bucharest; Moraru PI, Rusu T (2010) Soil tillage conservation and its effect on soil organic matter, water management and carbon sequestration. J Food Agric Environ 8(3&4):309–312

    Google Scholar 

  132. Ioniță I, Niacșu L, Petrovici G, Blebea-Apostu AM (2015) Gully development in eastern Romania: a case study from Falciu Hills. Nat Hazards 79(1):113–138. http://link.springer.com/article/10.1007/s11069-015-1732-8

    Article  Google Scholar 

  133. Niacșu L (2012) Pereschiv Basin (Tutova Hills). Study of geomorphology and pedogeography with special regard to land use (in Romanian), “Alexandru Ioan Cuza” University Publishing House, Iasi, 308 pp, ISBN 978-973-703-753-4

    Google Scholar 

  134. Ionita I (2008) Land degradation and soil conservation on the Moldavian Plateau, Romania. In: Efe R, Cravins G, Öztürk M, Atalay I (eds) Natural environment and culture in the Mediterranean Region. Cambridge Scholars Publishing, pp 149–160, ISBN (13):9781847186584, Newcastle, UK

    Google Scholar 

  135. Savu P, Bucur D (2002) Organizing and arranging agricultural land with land improvement works (in Romanian). Ion Ionescu de la BradPublishing house, Iasi, 502 p, ISBN 973-8014-62-X

    Google Scholar 

  136. Motoc M, Mircea S (2005) Some problems regarding the formation of floods and erosion in small watershed (in Romanian). Cartea Universitara Publishing House, Bucharest

    Google Scholar 

  137. Moraru PI, Rusu T, Gus P, Bogdan I, Pop AI (2015) The role of minimum tillage in protecting environmental resources of the Transylvanian plain, Romania. Romanian Agric Res 32:127–135

    Google Scholar 

  138. Cablík J, Jůva K (1963) Protierozní ochrana půdy. Druhé přepracované a rozšířené vydání. Praha, Státní zemědělské nakladatelství, Rostlinná výroba

    Google Scholar 

  139. Mazín VA (2017) Klimatické změny a my: šumavské ozvěny na pozadí novelizace zákona o ochraně přírody a krajiny 2016. Praha, Fortuna. ISBN 978-80-7373-134-2

    Google Scholar 

  140. Budoi G (2000) Agrochemistry. In: Soil and plant (in Romanian). Didactic and Pedagogical Publishing house, Bucharest

    Google Scholar 

  141. Schiettecatte W, Gabriels D, Cornelis WM, Hofman G (2008) Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Sci Soc Am J 72(1):50–55. https://doi.org/10.2136/sssaj2007.0201

    Article  CAS  Google Scholar 

  142. Dautrebande S, Sohier C (2006) L’érosion hydrique et les pertes en sols agricoles en Région wallonne. Rapport analytique 2006 sur l’état de l’environnement wallon. FUSAGx-UHAGx. Gembloux, 121 p

    Google Scholar 

  143. Lahmar R (2010) Adoption of conservation agriculture in Europe: lessons of the KASSA project. Land Use Policy 27(1):4–10

    Article  Google Scholar 

Download references

Acknowledgement

Proposed text was supported by project of Technological Agency of the Czech Republic, Programe Epsilon TH02030133 “Agriculture management system integrating efficient nutrients utilization by crops and water conservation against non-point source pollution” and by the University of South Bohemia in Ceske Budejovice research project GAJU 059/2019/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bernas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernas, J. et al. (2020). Agrotechnology as Key Factor in Effective Use of Water on Arable Land. In: Zelenakova, M., Fialová, J., Negm, A. (eds) Assessment and Protection of Water Resources in the Czech Republic. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-18363-9_12

Download citation

Publish with us

Policies and ethics