Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

  • 339 Accesses

Abstract

The scope of this chapter is limited with the connection structures of the biologically inspired neural networks. Many biological networks are constructed with both regular and random connections between neurons. Bioinspired systems should mimic this mixed topology of biological networks, while the artificial system is still realizable. In this chapter, we focus on cellular neural networks, which is a bioinspired network with many analog realizations. Cellular neural network models are investigated under the existence of random connections additional to its regular connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Books, 1962)

    Google Scholar 

  2. J.J. Hopfield, Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  3. L.O. Chua, L. Yang, Cellular neural networks: theory and applications. IEEE Trans. Circuits Syst. I 35(10), 1257–1290 (1988)

    Article  MathSciNet  Google Scholar 

  4. H.R. Wilson, J.D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  Google Scholar 

  5. H. Hartline, F. Ratlif, Spatial summation of inhibitory in influences in the eye of limulus, and the mutual interaction of receptor units. J. Gen. Physiol. 41, 1049–1066 (1958)

    Article  Google Scholar 

  6. F.H.L. Da Silva, A. Hoeks, H. Smits, L.H. Zetterberg, Model of brain rhythmic activity. Biol. Cybern. 15, 27–37 (1974)

    Google Scholar 

  7. W.J. Freeman, Mass Action in the Nervous System (Academic Press, New York, 1975)

    Google Scholar 

  8. M.K. Muezzinoglu, A. Vergara, R. Huerta, T. Nowotny, N. Rulkov, H.D.I. Abarbanel, A.I. Selverston, M.I. Rabinovich, Artifcial olfactory brain for mixture identifcation, in Neural Information Processing Systems (2008), pp. 1121–1128

    Google Scholar 

  9. W. Freeman, A neurobiological theory of meaning in perception. Part I: information and meaning in nonconvergent and nonlocal brain dynamics. Int. J. Bifurc. Chaos. 13(9), 2493–2511 (2003)

    Article  MathSciNet  Google Scholar 

  10. D. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  11. S.I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  12. L.B. Vosshall, A.M. Wong, R. Axel, An olfactory sensory map in the fly brain. Cell 102(2), 147–159 (2000)

    Article  Google Scholar 

  13. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 1998)

    Google Scholar 

  14. M.E. Yalçın, J.A.K. Suykens, J. Vandewalle, Cellular Neural Networks, Multi-scroll Chaos and Synchronization (World Scientific, 2005)

    Google Scholar 

  15. S. Espejo, C. Carmona, R. Dominguez-Castro, A. Rodriguez-Vazquez, CNN universal chip in CMOS technology. Int. J. Circuit Theory Appl. 24, 93–111 (1996)

    Article  Google Scholar 

  16. T. Roska, L. Chua, The CNN universal machine—an analogic array computer. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 40(3), 163–173 (1993)

    Article  Google Scholar 

  17. A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, S. Meana, ACE16k The third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Trans. Circuits Syst. I Regul. Pap. 51(5), 851–863 (2004)

    Article  Google Scholar 

  18. Cellular Sensory Wave Computers Laboratory: Cellular Wave Computing Library. Computer and Automation Research Institute-Hungarian Academy of Sciences (2007)

    Google Scholar 

  19. P. Foldesy, L. Kek, A. Zarandy, T. Roska, G. Bartfai, Fault-tolerant design of analogic CNN templates and algorithms-part I: the binary output case. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(2), 312–322 (1999)

    Article  Google Scholar 

  20. S. Xavier-de-Souza, M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, Toward CNN chip-specific robustness. IEEE Trans. Circuits Syst. I Regul. Pap. 51(5), 892–902 (2004)

    Article  Google Scholar 

  21. E. Kose, M.E. Yalcin, A new architecture for emulating CNN with template learning on FPGA, in The 16th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2018) (2018), pp. 1–4

    Google Scholar 

  22. M.E. Yalcin, A simple programmable autowave generator network for wave computing applications. IEEE Trans. Circuits Syst. II Express Briefs. 55(11), 1173–1177 (2008)

    Article  Google Scholar 

  23. R. Yeniceri, M.E. Yalcin, Path planning on cellular nonlinear network using active wave computing technique, in Proceedings of SPIE, Bio-engineered and Bioinspired Systems IV, vol. 7365 (2009)

    Google Scholar 

  24. V. Kilic, M.E. Yalcin, An active wave computing based path finding approach for 3-D environment, in Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS 11) (2011), pp. 2165–2168

    Google Scholar 

  25. D. Watts, S. Strogatz, Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  26. J.W. Bohland, A.A. Minai, Efficient associative memory using small-world architecture. Neurocomputing 3840, 489–496 (2001)

    Article  Google Scholar 

  27. K.Y.N. Tsurata, Y. Zonghuang, A. Ushida, Small-world cellular neural networks for image processing applications, in Proceedings of European Conference on Circuit Theory and Design (2003), pp. 225–228

    Google Scholar 

  28. T. Ayhan, M.E. Yalcin, An application of small-world cellular neural networks on odor classification. Int. J. Bifurc. Chaos. 22(1), 1–12 (2012)

    Article  Google Scholar 

  29. T. Ayhan, M.E. Yalcin, Randomly reconfigurable cellular neural network, in Proceedings of the 20th European Conference on Circuit Theory and Design (ECCTD11) (2011), pp. 625–628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müştak E. Yalçın .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yalçın, M.E., Ayhan, T., Yeniçeri, R. (2020). Artificial Neural Network Models. In: Reconfigurable Cellular Neural Networks and Their Applications. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-17840-6_2

Download citation

Publish with us

Policies and ethics