Skip to main content

Long Non-coding RNAs in the Development and Maintenance of Lymphoid Malignancies

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

The development of lymphoid cells (i.e. B and T cells) is a complicated process involving various differentiation substages in bone marrow, thymus, lymph nodes and the circulation. Long noncoding (lnc)RNAs are in many ways involved in both normal lymphoid development and malignant transformation of lymphoid cells. In this chapter, we give an overview of the current state of knowledge on the diverse roles of lncRNAs in lymphoid malignancies. One remarkable finding is the direct involvement of lncRNA transcription in genome integrity and malignant transformation. B and T cell receptor rearrangements involve the introduction of double strand DNA breaks followed by their directed repair. LncRNA transcription was associated with off-targeting of endonucleases introducing these double strand breaks, which can lead to chromosomal translocation of oncogene loci, and as a consequence aberrant expression and development of a malignancy. Oncogenic fusion genes present in a subset of T-cell malignancies were furthermore shown to influence expression of a subset of lncRNAs. These expression changes in turn, were directly linked to oncogenic pathways, treatment response and patient outcome. Overexpression of oncogenes also induced changes in lncRNA expression patterns. These oncogene-regulated lncRNAs in turn play essential roles in the mediation of the downstream effects of the respective oncogene. In addition, some lncRNAs are involved in the upstream regulation of common oncogenes. We furthermore discuss a few specific lncRNAs that have been functionally characterized in detail in one or multiple lymphoid cancers. Lastly, we address noncoding genome variants and their association with the susceptibility to lymphoid malignancies. We conclude that lncRNAs are major players in all aspects of lymphoid development and malignant transformation. This strongly suggests that lncRNAs can be exploited for prognostic and therapeutic purposes in lymphoid malignancies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilo, F., Zhou, M. M., & Walsh, M. J. (2011). Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Research, 71, 5365–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Dominguez, J. R., & Lodish, H. F. (2017). Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood, 130(18), 1965–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amodio, N., Stamato, M. A., Juli, G., Morelli, E., Fulciniti, M., Manzoni, M., et al. (2018). Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 32(9), 1948–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu, U., Meng, F. L., Keim, C., Grinstein, V., Pefanis, E., Eccleston, J., et al. (2011). The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell, 144, 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck-Engeser, G. B., Lum, A. M., Huppi, K., Caplen, N. J., Wang, B. B., & Wabl, M. (2008). Pvt1-encoded microRNAs in oncogenesis. Retrovirology, 5, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beekman, R., Amador, V., & Campo, E. (2018). SOX11, a key oncogenic factor in mantle cell lymphoma. Current Opinion in Hematology, 25, 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Blume, C. J., Hotz-Wagenblatt, A., Hullein, J., Sellner, L., Jethwa, A., Stolz, T., et al. (2015). p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia, 29, 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  • Bonnal, R. J., Ranzani, V., Arrigoni, A., Curti, S., Panzeri, I., Gruarin, P., et al. (2015). De novo transcriptome profiling of highly purified human lymphocytes primary cells. Scientific Data, 2, 150051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casero, D., Sandoval, S., Seet, C. S., Scholes, J., Zhu, Y., Ha, V. L., et al. (2015). Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nature Immunology, 16, 1282–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerhan, J. R., Berndt, S. I., Vijai, J., Ghesquieres, H., McKay, J., Wang, S. S., et al. (2014). Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nature Genetics, 46, 1233–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarle, R., Zhang, Y., Frock, R. L., Lewis, S. M., Molinie, B., Ho, Y. J., et al. (2011). Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell, 147, 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, S. F., Chang, Y. C., Chang, C. S., Lin, S. F., Liu, Y. C., Hsiao, H. H., et al. (2014). MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer, 14, 809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conde, L., Riby, J., Zhang, J., Bracci, P. M., & Skibola, C. F. (2014). Copy number variation analysis on a non-Hodgkin lymphoma case-control study identifies an 11q25 duplication associated with diffuse large B-cell lymphoma. PLoS One, 9, e105382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doose, G., Haake, A., Bernhart, S. H., Lopez, C., Duggimpudi, S., Wojciech, F., et al. (2015). MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E5261–E5270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durinck, K., Wallaert, A., Van de Walle, I., Van Loocke, W., Volders, P. J., Vanhauwaert, S., et al. (2014). The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia. Haematologica, 99, 1808–1816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dzikiewicz-Krawczyk, A., Kok, K., Slezak-Prochazka, I., Robertus, J. L., Bruining, J., Tayari, M. M., et al. (2017). ZDHHC11 and ZDHHC11B are critical novel components of the oncogenic MYC-miR-150-MYB network in Burkitt lymphoma. Leukemia, 31, 1470–1473.

    Article  CAS  PubMed  Google Scholar 

  • Enciso-Mora, V., Broderick, P., Ma, Y., Jarrett, R. F., Hjalgrim, H., Hemminki, K., et al. (2010). A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nature Genetics, 42, 1126–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enninga, J., Levay, A., & Fontoura, B. M. (2003). Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Molecular and Cellular Biology, 23, 7271–7284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, K., Han, B. W., Chen, Z. H., Lin, K. Y., Zeng, C. W., Li, X. J., et al. (2014). A distinct set of long non-coding RNAs in childhood MLL-rearranged acute lymphoblastic leukemia: Biology and epigenetic target. Human Molecular Genetics, 23, 3278–3288.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, T. R., Rodriguez-Malave, N. I., Waters, E. V., Yan, W., Casero, D., Basso, G., et al. (2015). LncRNA expression discriminates karyotype and predicts survival in B-lymphoblastic leukemia. Molecular Cancer Research, 13, 839–851.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, T. R., Contreras, J. R., Zampini, M., Rodriguez-Malave, N. I., Alberti, M. O., Anguiano, J., et al. (2017). The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Molecular Cancer, 16, 126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, D., Lv, A. E., Li, H. P., Han, D. H., & Zhang, Y. P. (2017). LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple myeloma. Journal of Cellular Biochemistry, 118, 3341–3348.

    Article  CAS  PubMed  Google Scholar 

  • Ghazavi, F., De Moerloose, B., Van Loocke, W., Wallaert, A., Helsmoortel, H. H., Ferster, A., et al. (2016). Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Oncotarget, 7, 73769–73780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghesquieres, H., Larrabee, B. R., Casasnovas, O., Maurer, M. J., McKay, J. D., Ansell, S. M., et al. (2018). A susceptibility locus for classical Hodgkin lymphoma at 8q24 near MYC/PVT1 predicts patient outcome in two independent cohorts. British Journal of Haematology, 180, 286–290.

    Article  PubMed  Google Scholar 

  • Gioia, R., Drouin, S., Ouimet, M., Caron, M., St-Onge, P., Richer, C., et al. (2017). LncRNAs downregulated in childhood acute lymphoblastic leukemia modulate apoptosis, cell migration, and DNA damage response. Oncotarget, 8, 80645–80650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, Y., Xiao, X., & Yang, S. (2017). LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget, 8, 101984–101993.

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Camino, A., Martin-Guerrero, I., Garcia de Andoin, N., Sastre, A., Carbone Baneres, A., Astigarraga, I., et al. (2017). Confirmation of involvement of new variants at CDKN2A/B in pediatric acute lymphoblastic leukemia susceptibility in the Spanish population. PLoS One, 12, e0177421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handa, H., Kuroda, Y., Kimura, K., Masuda, Y., Hattori, H., Alkebsi, L., et al. (2017). Long non-coding RNA MALAT1 is an inducible stress response gene associated with extramedullary spread and poor prognosis of multiple myeloma. British Journal of Haematology, 179, 449–460.

    Article  CAS  PubMed  Google Scholar 

  • Hart, J. R., Roberts, T. C., Weinberg, M. S., Morris, K. V., & Vogt, P. K. (2014). MYC regulates the non-coding transcriptome. Oncotarget, 5, 12543–12554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinaniemi, M., Vuorenmaa, T., Teppo, S., Kaikkonen, M. U., Bouvy-Liivrand, M., Mehtonen, J., et al. (2016). Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. eLife, 5, e13087. https://doi.org/10.7554/eLife.13087.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, G., Lou, Z., & Gupta, M. (2014). The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One, 9, e107016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, A. X., Huang, Z. Y., Zhang, L., & Shen, J. (2017a). Potential prognostic long non-coding RNA identification and their validation in predicting survival of patients with multiple myeloma. Tumour Biology, 39, 1010428317694563.

    PubMed  Google Scholar 

  • Hu, G., Gupta, S. K., Troska, T. P., Nair, A., & Gupta, M. (2017b). Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget, 8, 80223–80234.

    PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Lin, J., Fang, H., Fang, J., Li, C., Chen, W., et al. (2018). Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia, 32(10), 2250–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, T., Wang, Y., Lin, M. F., Koegel, A. K., Kotake, Y., Grant, G. D., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 43, 621–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungate, E. A., Vora, S. R., Gamazon, E. R., Moriyama, T., Best, T., Hulur, I., et al. (2016). A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nature Communications, 7, 10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huppi, K., & Siwarski, D. (1994). Chimeric transcripts with an open reading frame are generated as a result of translocation to the Pvt-1 region in mouse B-cell tumors. International Journal of Cancer, 59, 848–851.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, M. K., Niknafs, Y. S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 47, 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karube, K., & Campo, E. (2015). MYC alterations in diffuse large B-cell lymphomas. Seminars in Hematology, 52, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. H., Kim, S. H., Yang, W. I., Kim, S. J., & Yoon, S. O. (2017). Association of the long non-coding RNA MALAT1 with the polycomb repressive complex pathway in T and NK cell lymphoma. Oncotarget, 8, 31305–31317.

    PubMed  PubMed Central  Google Scholar 

  • Kim, M., Morales, L. D., Jang, I. S., Cho, Y. Y., & Kim, D. J. (2018). Protein tyrosine phosphatases as potential regulators of STAT3 signaling. International Journal of Molecular Sciences, 19, E2708. https://doi.org/10.3390/ijms19092708.

    Article  CAS  PubMed  Google Scholar 

  • Klein, I. A., Resch, W., Jankovic, M., Oliveira, T., Yamane, A., Nakahashi, H., et al. (2011). Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell, 147, 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korac, P., Dotlic, S., Matulic, M., Zajc Petranovic, M., & Dominis, M. (2017). Role of MYC in B cell lymphomagenesis. Genes (Basel), 8, E115. https://doi.org/10.3390/genes8040115.

    Article  CAS  Google Scholar 

  • Kotake, Y., Kitagawa, K., Ohhata, T., Sakai, S., Uchida, C., Niida, H., et al. (2016). Long non-coding RNA, PANDA, contributes to the stabilization of p53 tumor suppressor protein. Anticancer Research, 36, 1605–1611.

    CAS  PubMed  Google Scholar 

  • Lajoie, M., Drouin, S., Caron, M., St-Onge, P., Ouimet, M., Gioia, R., et al. (2017). Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia. PLoS One, 12, e0174124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, B., Chen, P., Qu, J., Shi, L., Zhuang, W., Fu, J., et al. (2014). Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. The Journal of Biological Chemistry, 289, 29365–29375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limon, J. J., & Fruman, D. A. (2012). Akt and mTOR in B cell activation and differentiation. Frontiers in Immunology, 3, 228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lollies, A., Hartmann, S., Schneider, M., Bracht, T., Weiss, A. L., Arnolds, J., et al. (2018). An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia, 32, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Pannunzio, N. R., Greisman, H. A., Casero, D., Parekh, C., & Lieber, M. R. (2015). Convergent BCL6 and lncRNA promoters demarcate the major breakpoint region for BCL6 translocations. Blood, 126, 1730–1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macchia, G., Lonoce, A., Venuto, S., Macri, E., Palumbo, O., Carella, M., et al. (2016). A rare but recurrent t(8;13)(q24;q14) translocation in B-cell chronic lymphocytic leukaemia causing MYC up-regulation and concomitant loss of PVT1, miR-15/16 and DLEU7. British Journal of Haematology, 172, 296–299.

    Article  PubMed  Google Scholar 

  • Malouf, C., & Ottersbach, K. (2018). Molecular processes involved in B cell acute lymphoblastic leukaemia. Cellular and Molecular Life Sciences, 75, 417–446.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, A. J., Zheng, S., DiMenna, L. J., & Chaudhuri, J. (2014). Regulation of immunoglobulin class-switch recombination: Choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Advances in Immunology, 122, 1–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medyouf, H., Gusscott, S., Wang, H., Tseng, J. C., Wai, C., Nemirovsky, O., et al. (2011). High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. The Journal of Experimental Medicine, 208, 1809–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo, C. P., Campos, C. B., Rodrigues Jde, O., Aguirre-Neto, J. C., Atalla, A., Pianovski, M. A., et al. (2016). Long non-coding RNAs: Biomarkers for acute leukaemia subtypes. British Journal of Haematology, 173, 318–320.

    Article  PubMed  Google Scholar 

  • Meng, F. L., Du, Z., Federation, A., Hu, J., Wang, Q., Kieffer-Kwon, K. R., et al. (2014). Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell, 159, 1538–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, H., Han, L., Hong, C., Ding, J., & Huang, Q. (2018). Aberrant lncRNA expression in multiple myeloma. Oncology Research, 26, 809–816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mladenov, E., Magin, S., Soni, A., & Iliakis, G. (2013). DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Frontiers in Oncology, 3, 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourtada-Maarabouni, M., & Williams, G. T. (2014). Role of GAS5 noncoding RNA in mediating the effects of rapamycin and its analogues on mantle cell lymphoma cells. Clinical Lymphoma, Myeloma and Leukemia, 14, 468–473.

    Article  PubMed  Google Scholar 

  • Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F., & Williams, G. T. (2008). Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). Journal of Cell Science, 121, 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Nagoshi, H., Taki, T., Hanamura, I., Nitta, M., Otsuki, T., Nishida, K., et al. (2012). Frequent PVT1 rearrangement and novel chimeric genes PVT1-NBEA and PVT1-WWOX occur in multiple myeloma with 8q24 abnormality. Cancer Research, 72, 4954–4962.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y., Takahashi, N., Kakegawa, E., Yoshida, K., Ito, Y., Kayano, H., et al. (2008). The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genetics and Cytogenetics, 182, 144–149.

    Article  CAS  PubMed  Google Scholar 

  • Ngoc, P. C. T., Tan, S. H., Tan, T. K., Chan, M. M., Li, Z., Yeoh, A. E. J., et al. (2018). Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia, 32(10), 2138–2151.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouimet, M., Drouin, S., Lajoie, M., Caron, M., St-Onge, P., Gioia, R., et al. (2017). A childhood acute lymphoblastic leukemia-specific lncRNA implicated in prednisolone resistance, cell proliferation, and migration. Oncotarget, 8, 7477–7488.

    Article  PubMed  Google Scholar 

  • Pefanis, E., Wang, J., Rothschild, G., Lim, J., Chao, J., Rabadan, R., et al. (2014). Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature, 514, 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri, A., Dybkaer, K., Bogsted, M., Thrue, C. A., Hagedorn, P. H., Schmitz, A., et al. (2015). Long noncoding RNA expression during human B-cell development. PLoS One, 10, e0138236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrich, A. M., Nabhan, C., & Smith, S. M. (2014). MYC-associated and double-hit lymphomas: A review of pathobiology, prognosis, and therapeutic approaches. Cancer, 120, 3884–3895.

    Article  PubMed  Google Scholar 

  • Pike, K. A., & Tremblay, M. L. (2016). TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine, 82, 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Poi, M. J., Li, J., Sborov, D. W., VanGundy, Z., Cho, Y. K., Lamprecht, M., et al. (2017). Polymorphism in ANRIL is associated with relapse in patients with multiple myeloma after autologous stem cell transplant. Molecular Carcinogenesis, 56, 1722–1732.

    Article  CAS  PubMed  Google Scholar 

  • Puvvula, P. K., Desetty, R. D., Pineau, P., Marchio, A., Moon, A., Dejean, A., et al. (2014). Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nature Communications, 5, 5323.

    Article  PubMed  Google Scholar 

  • Qian, J., Wang, Q., Dose, M., Pruett, N., Kieffer-Kwon, K. R., Resch, W., et al. (2014). B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell, 159, 1524–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. J. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38, 17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranzani, V., Rossetti, G., Panzeri, I., Arrigoni, A., Bonnal, R. J., Curti, S., et al. (2015). The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology, 16, 318–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Malave, N. I., Fernando, T. R., Patel, P. C., Contreras, J. R., Palanichamy, J. K., Tran, T. M., et al. (2015). BALR-6 regulates cell growth and cell survival in B-lymphoblastic leukemia. Molecular Cancer, 14, 214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronchetti, D., Agnelli, L., Taiana, E., Galletti, S., Manzoni, M., Todoerti, K., et al. (2016a). Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma. Oncotarget, 7, 14814–14830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronchetti, D., Manzoni, M., Agnelli, L., Vinci, C., Fabris, S., Cutrona, G., et al. (2016b). lncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome. Blood Cancer Journal, 6, e468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Martin, M., & Ferrando, A. (2017). The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood, 129, 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  • Savage, K. J., Johnson, N. A., Ben-Neriah, S., Connors, J. M., Sehn, L. H., Farinha, P., et al. (2009). MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood, 114, 3533–3537.

    Article  CAS  PubMed  Google Scholar 

  • Schrader, A., Bentink, S., Spang, R., Lenze, D., Hummel, M., Kuo, M., et al. (2012). High Myc activity is an independent negative prognostic factor for diffuse large B cell lymphomas. International Journal of Cancer, 131, E348–E361.

    Article  CAS  PubMed  Google Scholar 

  • Sehgal, L., Mathur, R., Braun, F. K., Wise, J. F., Berkova, Z., Neelapu, S., et al. (2014). FAS-antisense 1 lncRNA and production of soluble versus membrane FAS in B-cell lymphoma. Leukemia, 28, 2376–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C. M., & Steitz, J. A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 18, 6897–6909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Cheng, L., Shi, H., Zhang, Z., Zhao, H., Wang, Z., et al. (2016). A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma. Scientific Reports, 6, 27842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swier, L. J. Y. M., Dzikiewicz-Krawczyk, A., Winkle, M., van den Berg, A., & Kluiver, J. (2019). Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Molecular Oncology, 13(1), 26–45. https://doi.org/10.1002/1878-0261.12409.

    Article  CAS  PubMed  Google Scholar 

  • Tayari, M. M., Winkle, M., Kortman, G., Sietzema, J., de Jong, D., Terpstra, M., et al. (2016). Long noncoding RNA expression profiling in normal B-cell subsets and Hodgkin lymphoma reveals Hodgkin and reed-Sternberg cell-specific long noncoding RNAs. The American Journal of Pathology, 186, 2462–2472.

    Article  CAS  PubMed  Google Scholar 

  • Trimarchi, T., Bilal, E., Ntziachristos, P., Fabbri, G., Dalla-Favera, R., Tsirigos, A., et al. (2014). Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell, 158, 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng, Y. Y., Moriarity, B. S., Gong, W., Akiyama, R., Tiwari, A., Kawakami, H., et al. (2014). PVT1 dependence in cancer with MYC copy-number increase. Nature, 512, 82–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi, Y., Chinen, Y., Sakamoto, N., Nagoshi, H., Nishida, K., Kobayashi, S., et al. (2013). Deletion or methylation of CDKN2A/2B and PVT1 rearrangement occur frequently in highly aggressive B-cell lymphomas harboring 8q24 abnormality. Leukemia and Lymphoma, 54, 2760–2764.

    Article  CAS  PubMed  Google Scholar 

  • Verboom, K., Van Loocke, W., Volders, P. J., Decaesteker, B., Avila Cobos, F., Bornschein, S., et al. (2018). A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing. Haematologica, 103(12), e585–e589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallaert, A., Durinck, K., Van Loocke, W., Van de Walle, I., Matthijssens, F., Volders, P. J., et al. (2016). Long noncoding RNA signatures define oncogenic subtypes in T-cell acute lymphoblastic leukemia. Leukemia, 30, 1927–1930.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wu, P., Lin, R., Rong, L., Xue, Y., & Fang, Y. (2015). LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Scientific Reports, 5, 13749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Sehgal, L., Jain, N., Khashab, T., Mathur, R., & Samaniego, F. (2016). LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. Journal of Translational Medicine, 14, 346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Y., Zhang, M., Xu, H., Wang, Y., Li, Z., Chang, Y., et al. (2017). Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway. Oncotarget, 8, 72182–72196.

    PubMed  PubMed Central  Google Scholar 

  • Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.

    Article  CAS  PubMed  Google Scholar 

  • Winkle, M., van den Berg, A., Tayari, M., Sietzema, J., Terpstra, M., Kortman, G., et al. (2015). Long noncoding RNAs as a novel component of the Myc transcriptional network. The FASEB Journal, 29, 2338–2346.

    Article  CAS  PubMed  Google Scholar 

  • Zeidler, R., Joos, S., Delecluse, H. J., Klobeck, G., Vuillaume, M., Lenoir, G. M., et al. (1994). Breakpoints of Burkitt’s lymphoma t(8;22) translocations map within a distance of 300 kb downstream of MYC. Genes, Chromosomes and Cancer, 9, 282–287.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Zhao, H., Xu, W., Bao, S., Cheng, L., & Sun, J. (2017). Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Molecular Cancer, 16, 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Kluiver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Winkle, M., Dzikiewicz-Krawczyk, A., Kluiver, J., van den Berg, A. (2019). Long Non-coding RNAs in the Development and Maintenance of Lymphoid Malignancies. In: Khalil, A. (eds) Molecular Biology of Long Non-coding RNAs. Springer, Cham. https://doi.org/10.1007/978-3-030-17086-8_6

Download citation

Publish with us

Policies and ethics