Skip to main content

A Hybrid Multiobjective Differential Evolution Approach to Stator Winding Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

This paper describes a multiobjective differential evolution approach to the optimization of the design of alternating current distributed stator windings of electric motors. The objective functions are minimizing both the machine airgap magnetomotive force distortion and the winding wire length. Constraints are related to the physical feasibility of solutions. Four distinct winding types are considered. Three mutation variations of the multiobjective differential evolution algorithm are developed and assessed using different performance metrics. These algorithmic approaches are able to generate well-distributed, uniformly spread solutions on the nondominated front. The characterization of the nondominated fronts conveys helpful information for aiding design engineers to choose the most suitable compromise solution for a specific machine, embodying a balanced trade-off between machine efficiency and manufacturing cost.

A. M. Silva acknowledges the support by the Portuguese Science and Technology Foundation (FCT).

C. H. Antunes acknowledges the support of projects UID/Multi/308/2019, ESGRIDS (POCI-01-0145-FEDER-016434) and MAnAGER (POCI-01-0145-FEDER-028040).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tessarolo, A.: A quadratic-programming approach to the design optimization of fractional-slot concentrated windings for surface permanent-magnet machines. IEEE Trans. Energy Convers. 33(1), 442–452 (2018)

    Article  Google Scholar 

  2. Smith, A.C., Delgado, D.: Automated AC winding design. In: 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), pp. 1–6, April 2010

    Google Scholar 

  3. Bekka, N., ZaĂ¯m, M.E.H., Bernard, N., Trichet, D.: A novel methodology for optimal design of fractional slot with concentrated windings. IEEE Trans. Energy Convers. 31(3), 1153–1160 (2016)

    Article  Google Scholar 

  4. Silva, A.M., Ferreira, F.J.T.E., FalcĂ¡o, G.F., Rodrigues, M.: Novel method to minimize the air-gap MMF spatial harmonic content in three-phase windings. In: 2018 XIII International Conference on Electrical Machines (ICEM), pp. 2504–2510, September 2018

    Google Scholar 

  5. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1980–1987, June 2004

    Google Scholar 

  6. Salvatore, N., Caponio, A., Neri, F., Stasi, S., Cascella, G.L.: Optimization of delayed-state kalman-filter-based algorithm via differential evolution for sensorless control of induction motors. IEEE Trans. Industr. Electron. 57(1), 385–394 (2010)

    Article  Google Scholar 

  7. Pan, X., Zhu, J., Chen, H., Chen, X., Hu, K.: A differential evolution-based hybrid NSGA-II for multi-objective optimization. In: 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 81–86 (2015)

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach. NCS. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  10. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

    Article  Google Scholar 

  11. Sarker, R., Coello Coello, C.A.: Assessment Methodologies for Multiobjective Evolutionary Algorithms, vol. 48, pp. 177–195. Springer, Boston (2002). https://doi.org/10.1007/0-306-48041-7_7

  12. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  13. Riquelme, N., LĂ¼cken, C.V., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11, October 2015

    Google Scholar 

  14. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature – PPSN IV, pp. 584–593. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_1022

    Chapter  Google Scholar 

  15. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 392–403 (1998)

    Article  Google Scholar 

  16. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: amosa. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, A.M., Ferreira, F.J.T.E., Antunes, C.H. (2019). A Hybrid Multiobjective Differential Evolution Approach to Stator Winding Optimization. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics