Skip to main content

Body Symmetry in Morphologically Evolving Modular Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11454))

Abstract

Almost all animals natural evolution has produced on Earth have a symmetrical body. In this paper we investigate the evolution of body symmetry in an artificial system where robots evolve. To this end, we define several measures to quantify symmetry in modular robots and see how these relate to fitness that corresponds to a locomotion task. We find that, although there is only a weak correlation between symmetry and fitness over the course of a single evolutionary run, there is a positive correlation between the level of symmetry and maximum fitness when a set of runs is taken into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eiben, A., Smith, J.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-05094-1

  2. Eiben, A., Smith, J.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)

    Article  Google Scholar 

  3. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013). http://doi.acm.org/10.1145/2493883

  4. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, vol. Part G. 61, pp. 1423–1451. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_62

  5. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994). https://doi.org/10.1162/artl.1994.1.353

  6. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 1994, pp. 15–22. ACM, New York (1994). https://doi.org/10.1145/192161.192167

  7. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  8. Auerbach, J., et al.: Robogen: robot generation through artificial evolution. In: Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–137 (2014)

    Google Scholar 

  9. Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PLoS One 10(6), e0128444 (2015)

    Article  Google Scholar 

  10. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution - artificial evolutionary systems in the 21st century. Evol. Intell. 5(4), 261–272 (2012). http://www.few.vu.nl/~ehaasdi/papers/EAE-manifesto.pdf

  11. Eiben, A.E., et al.: The triangle of life: Evolving robots in real-time and real-space (2013)

    Google Scholar 

  12. Eiben, A.E.: EvoSphere: the world of robot evolution. In: Dediu, A.-H., Magdalena, L., Martín-Vide, C. (eds.) TPNC 2015. LNCS, vol. 9477, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26841-5_1

    Chapter  Google Scholar 

  13. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online robot evolution. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 687–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_46

    Chapter  Google Scholar 

  14. Jelisavcic, M., et al.: Real-world evolution of robot morphologies: a proof of concept. In: Artificial Life (2017)

    Google Scholar 

  15. Werner, E.: The origin, evolution and development of bilateral symmetry in multicellular organisms. Quantitative Biology ArXiv:1207.3289 (2012)

  16. Marbach, D., Ijspeert, A.J.: Online optimization of modular robot locomotion. In: IEEE International Conference Mechatronics and Automation 2005, vol. 1, pp. 248–253, July 2005

    Google Scholar 

  17. Faiña, A., Bellas, F., López Peña, F., Duro, R.: Edhmor: evolutionary designer of heterogeneous modular robots. Eng. Appl. Artif. Intell. 26, 2408–2423 (2013)

    Google Scholar 

  18. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: Evolving soft robots with multiple materials and a powerful generative encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation GECCO 2013, pp. 167–174. ACM, New York (2013). https://doi.org/10.1145/2463372.2463404

  19. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the hyperneat generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771, May 2009

    Google Scholar 

  20. Sun, C., Sherrah, J.: 3D symmetry detection using the extended gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 164–168 (1997)

    Article  Google Scholar 

  21. Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25(3), 560–568, July 2006. https://doi.org/10.1145/1141911.1141924

  22. Li, W.H., Zhang, A.M., Kleeman, L.: Bilateral symmetry detection for real-time robotics applications. Int. J. Robot. Res. 27(7), 785–814 (2008). https://doi.org/10.1177/0278364908092131

  23. Zabrodsky, H., Peleg, S., Avnir, D.: A measure of symmetry based on shape similarity. In: Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 703–706, June 1992

    Google Scholar 

  24. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)

    Article  Google Scholar 

  25. Miras, K., Haasdijk, E., Glette, K., Eiben, A.E.: Search space analysis of evolvable robot morphologies. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 703–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_47

    Chapter  Google Scholar 

  26. Rossi, C., Eiben, A.: Simultaneous versus incremental learning of multiple skills by modular robots. Evol. Intell. 7(2), 119–131 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. van de Velde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van de Velde, T., Rossi, C., Eiben, A.E. (2019). Body Symmetry in Morphologically Evolving Modular Robots. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics