Skip to main content

Applications of Micro-CT Technology in Endodontics

  • Chapter
  • First Online:

Abstract

Endodontics is a specialty of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Its study and practice encompass the basic and clinical sciences, including the biology of the normal pulp and the etiology, diagnosis, prevention, and treatment of diseases and injuries of the pulp and associated periradicular conditions. Recent technological advancements have allowed several methods to be successfully employed to visualize the anatomy of the human teeth, but in the last decade, nondestructive high-resolution micro-CT imaging has gained increasing popularity. This technology allows for the three-dimensional study of the root canal system and the evaluation of its influence on different procedures. Applications of micro-CT for experimental endodontology are now becoming extensive and integrated into dental education. The purpose of this chapter is to discuss the applications of micro-CT technology in endodontic research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. AAE. Glossary of endodontics terms. 8th ed. Chicago: American Association of Endodontists; 2015.

    Google Scholar 

  2. Tjäderhane L. Dentin basic structure, composition, and function. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 17–30.

    Google Scholar 

  3. Perrini N, Versiani MA. Historical overview of the studies on root canal anatomy. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 3–16.

    Google Scholar 

  4. Versiani MA, Pécora JD, Sousa-Neto MD. Microcomputed tomography analysis of the root canal morphology of single-rooted mandibular canines. Int Endod J. 2013;46:800–7.

    CAS  PubMed  Google Scholar 

  5. Mayo CV, Montgomery S, de Rio C. A computerized method for evaluating root canal morphology. J Endod. 1986;12:2–7.

    CAS  PubMed  Google Scholar 

  6. Blašković-Šubat V, Smojver B, Marićić B, Sutalo J. A computerized method for the evaluation of root canal morphology. Int Endod J. 1995;28:290–6.

    PubMed  Google Scholar 

  7. Kato A, Ziegler A, Utsumi M, Ohno K, Takeichi T. Three-dimensional imaging of internal tooth structures: applications in dental education. J Oral Biosc. 2016;58:100–11.

    Google Scholar 

  8. Tachibana H, Matsumoto K. Applicability of X-ray computerized tomography in endodontics. Endod Dental Traumatol. 1990;6:16–20.

    CAS  Google Scholar 

  9. Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:510–6.

    CAS  PubMed  Google Scholar 

  10. Elliott JC, Dover SD. X-ray microtomography. J Microsc. 1982;126:211–3.

    CAS  PubMed  Google Scholar 

  11. Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J. Microcomputed tomography: an advanced system for detailed endodontic research. J Endod. 1995;21:561–8.

    CAS  PubMed  Google Scholar 

  12. Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV. Micro-computed tomography: a new tool for experimental endodontology. Int Endod J. 1999;32:165–70.

    CAS  PubMed  Google Scholar 

  13. Bjørndal L, Carlsen O, Thuesen G, Darvann T, Kreiborg S. External and internal macromorphology in 3D-reconstructed maxillary molars using computerized X-ray microtomography. Int Endod J. 1999;32:3–9.

    PubMed  Google Scholar 

  14. Peters OA, Laib A, Ruegsegger P, Barbakow F. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dent Res. 2000;79:1405–9.

    CAS  PubMed  Google Scholar 

  15. Versiani MA, Pécora JD, Sousa-Neto MD. Root and root canal morphology of four-rooted maxillary second molars: a micro-computed tomography study. J Endod. 2012;38:977–82.

    PubMed  Google Scholar 

  16. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Topics. 2005;10:3–29.

    Google Scholar 

  17. Weine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.

    CAS  PubMed  Google Scholar 

  18. Vertucci F, Seelig A, Gillis R. Root canal morphology of the human maxillary second premolar. Oral Surg Oral Med Oral Pathol. 1974;38:456–64.

    CAS  PubMed  Google Scholar 

  19. Versiani MA, Ordinola-Zapata R. Root canal anatomy: implications in biofilm disinfection. In: Chavez de Paz L, Sedgley C, Kishen A, editors. Root canal biofilms. Toronto: Springer International Publishing AG; 2015.

    Google Scholar 

  20. Versiani MA, Basrani B, Sousa Neto MD. The root canal anatomy in permanent dentition. 1st ed. Switzerland: Springer International Publishing; 2018.

    Google Scholar 

  21. Kim Y, Chang SW, Lee JK, Chen IP, Kaufman B, Jiang J, et al. A micro-computed tomography study of canal configuration of multiple-canalled mesiobuccal root of maxillary first molar. Clin Oral Investig. 2013;17:1541–6.

    PubMed  Google Scholar 

  22. Ordinola-Zapata R, Bramante CM, Villas-Boas MH, Cavenago BC, Duarte MH, Versiani MA. Morphologic micro-computed tomography analysis of mandibular premolars with three root canals. J Endod. 2013;39:1130–5.

    PubMed  Google Scholar 

  23. Gu Y, Zhou P, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part III—An odontometric analysis. J Endod. 2011;37:485–90.

    PubMed  Google Scholar 

  24. Versiani MA, Pécora JD, Sousa-Neto MD. The anatomy of two-rooted mandibular canines determined using micro-computed tomography. Int Endod J. 2011;44:682–7.

    CAS  PubMed  Google Scholar 

  25. Li X, Liu N, Ye L, Nie X, Zhou X, Wen X, et al. A micro-computed tomography study of the location and curvature of the lingual canal in the mandibular first premolar with two canals originating from a single canal. J Endod. 2012;38:309–12.

    PubMed  Google Scholar 

  26. Fan B, Yang J, Gutmann JL, Fan M. Root canal systems in mandibular first premolars with C-shaped root configurations. Part I: Microcomputed tomography mapping of the radicular groove and associated root canal cross-sections. J Endod. 2008;34:1337–41.

    PubMed  Google Scholar 

  27. Fan B, Cheung GS, Fan M, Gutmann JL, Bian Z. C-shaped canal system in mandibular second molars: Part I--Anatomical features. J Endod. 2004;30:899–903.

    PubMed  Google Scholar 

  28. Gu Y, Zhang Y, Liao Z. Root and canal morphology of mandibular first premolars with radicular grooves. Arch Oral Biol. 2013;58:1609–17.

    CAS  PubMed  Google Scholar 

  29. Keleș A, Keskin C. A micro-computed tomographic study of band-shaped root canal isthmuses, having their floor in the apical third of mesial roots of mandibular first molars. Int Endod J. 2018;51:240–6.

    PubMed  Google Scholar 

  30. Keleș A, Keskin C. Apical root canal morphology of mesial roots of mandibular first molar teeth with Vertucci Type II configuration by means of micro-computed tomography. J Endod. 2017;43:481–5.

    PubMed  Google Scholar 

  31. Leoni GB, Versiani MA, Pécora JD, Sousa-Neto MD. Micro–computed tomographic analysis of the root canal morphology of mandibular incisors. J Endod. 2014;40:710–6.

    PubMed  Google Scholar 

  32. Liu N, Li X, Ye L, An J, Nie X, Liu L, et al. A micro-computed tomography study of the root canal morphology of the mandibular first premolar in a population from southwestern China. Clin Oral Investig. 2013;17:999–1007.

    PubMed  Google Scholar 

  33. Meder-Cowherd L, Williamson AE, Johnson WT, Vasilescu D, Walton R, Qian F. Apical morphology of the palatal roots of maxillary molars by using micro-computed tomography. J Endod. 2011;37:1162–5.

    PubMed  Google Scholar 

  34. Pratt WK. Digital image processing. 2nd ed. New York: Wiley; 1991.

    Google Scholar 

  35. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph. 1987;21:163–9.

    Google Scholar 

  36. Hildebrand T, Rüegsegger P. Quantification of bone micro architecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15–23.

    PubMed  Google Scholar 

  37. Wu MK, R’Oris A, Barkis D, Wesselink PR. Prevalence and extent of long oval canals in the apical third. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:739–43.

    CAS  PubMed  Google Scholar 

  38. Peters OA, Laib A, Gohring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27:1–6.

    CAS  PubMed  Google Scholar 

  39. Boveda C, Kishen A. Contracted endodontic cavities: the foundation for less invasive alternatives in the management of apical periodontitis. Endod Topics. 2015;33:169–86.

    Google Scholar 

  40. Silva EJNL, Rover G, Belladonna FG, De-Deus G, Teixeira CS, FIdalgo TKS. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2017;22:109–18.

    CAS  PubMed  Google Scholar 

  41. Ordinola-Zapata R, Versiani MA, Bramante CM. Root canal components. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 31–46.

    Google Scholar 

  42. Krishan R, Paqué F, Ossareh A, Kishen A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.

    PubMed  Google Scholar 

  43. Moore B, Verdelis K, Kishen A, Dao T, Friedman S. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod. 2016;42:1779–83.

    PubMed  Google Scholar 

  44. Plotino G, Grande N, Isufi A, Ioppolo P, Pedullà E, Bedini R, et al. Fracture strength of endodontically treated teeth with different access cavity designs. J Endod. 2017;43:995–1000.

    PubMed  Google Scholar 

  45. Jiang Q, Huang Y, Tu X, Li Z, He Y, Yang X. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis. J Endod. 2018;44:1283–8.

    Google Scholar 

  46. Eaton JA, Clement DJ, Lloyd A, Marchesan MA. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars. J Endod. 2015;41:1888–91.

    PubMed  Google Scholar 

  47. Siqueira JF Jr, Roças IN, Ricucci D. Internal tooth anatomy and root canal instrumentation. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 277–302.

    Google Scholar 

  48. Bier CA, Shemesh H, Tanomaru-Filho M, Wesselink PR, Wu MK. The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation. J Endod. 2009;35:236–8.

    PubMed  Google Scholar 

  49. Shemesh H, Bier CA, Wu MK, Tanomaru-Filho M, Wesselink PR. The effects of canal preparation and filling on the incidence of dentinal defects. Int Endod J. 2009;42:208–13.

    CAS  PubMed  Google Scholar 

  50. Versiani MA, Souza E, De-Deus G. Critical appraisal of studies on dentinal radicular microcracks in endodontics: methodological issues, contemporary concepts, and future perspectives. Endod Topics. 2015;33:87–156.

    Google Scholar 

  51. Berman LH, Kuttler S. Fracture necrosis: diagnosis, prognosis assessment, and treatment recommendations. J Endod. 2010;36:442–6.

    PubMed  Google Scholar 

  52. De-Deus G, Belladonna FG, Marins JR, Silva EJ, Neves AA, Souza EM, et al. On the causality between dentinal defects and root canal preparation: a micro-CT assessment. Braz Dent J. 2016;27:664–9.

    PubMed  Google Scholar 

  53. De-Deus G, Belladonna FG, Souza EM, Silva EJ, Neves Ade A, Alves H, et al. Micro-computed tomographic assessment on the effect of protaper next and twisted file adaptive systems on dentinal cracks. J Endod. 2015;41:1116–9.

    PubMed  Google Scholar 

  54. De-Deus G, Cesar de Azevedo Carvalhal J, Belladonna FG, Silva E, Lopes RT, Moreira Filho RE, et al. Dentinal microcrack development after canal preparation: a longitudinal in situ micro-computed tomography study using a cadaver model. J Endod. 2017;43:1553–8.

    PubMed  Google Scholar 

  55. De-Deus G, Silva EJ, Marins J, Souza E, Neves Ade A, Goncalves Belladonna F, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod. 2014;40:1447–50.

    PubMed  Google Scholar 

  56. Gambill JM, Alder M, del Rio CE. Comparison of nickel-titanium and stainless steel hand-file instrumentation using computed tomography. J Endod. 1996;22:369–75.

    CAS  PubMed  Google Scholar 

  57. Versiani MA, Pécora JD, Sousa-Neto MD. Flat-oval root canal preparation with self-adjusting file instrument: a micro-computed tomography study. J Endod. 2011;37:1002–7.

    PubMed  Google Scholar 

  58. Siqueira JF Jr, Alves FRF, Versiani MA, Roças IN, Almeida BM, Neves MAS, et al. Correlative bacteriologic and micro–computed tomographic analysis of mandibular molar mesial canals prepared by Self-Adjusting File, Reciproc, and Twisted File systems. J Endod. 2013;39:1044–50.

    PubMed  Google Scholar 

  59. Fan B, Pan Y, Gao Y, Fang F, Wu Q, Gutmann JL. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J Endod. 2010;36:1866–9.

    PubMed  Google Scholar 

  60. Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular first molars in a Chinese population. J Endod. 2009;35:353–6.

    PubMed  Google Scholar 

  61. Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558–63.

    CAS  PubMed  Google Scholar 

  62. Somma F, Leoni D, Plotino G, Grande NM, Plasschaert A. Root canal morphology of the mesiobuccal root of maxillary first molars: a micro-computed tomographic analysis. Int Endod J. 2009;42:165–74.

    CAS  PubMed  Google Scholar 

  63. Paqué F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod. 2009;35:1044–7.

    PubMed  Google Scholar 

  64. De-Deus G, Marins J, Silva EJ, Souza E, Belladonna FG, Reis C, et al. Accumulated hard tissue debris produced during reciprocating and rotary nickel-titanium canal preparation. J Endod. 2015;41:676–81.

    PubMed  Google Scholar 

  65. Keleş A, Alcin H, Sousa-Neto MD, Versiani MA. Supplementary steps for removing hard tissue debris from isthmus-containing canal systems. J Endod. 2016;42:1677–82.

    PubMed  Google Scholar 

  66. Versiani MA, Alves FR, Andrade-Junior CV, Marceliano-Alves MF, Provenzano JC, Rocas IN, et al. Micro-CT evaluation of the efficacy of hard-tissue removal from the root canal and isthmus area by positive and negative pressure irrigation systems. Int Endod J. 2016;49:1079–87.

    CAS  PubMed  Google Scholar 

  67. Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J. 2011;44:148–53.

    PubMed  Google Scholar 

  68. Versiani MA, de Deus G, Vera J, Souza E, Steier L, Pécora JD, et al. 3D mapping of the irrigated areas of the root canal space using micro-computed tomography. Clin Oral Investig. 2015;19:859–66.

    PubMed  Google Scholar 

  69. Ørstavik D. Physical properties of root canal sealers: measurement of flow, working time, and compressive strength. Int Endod J. 1983;16:99–107.

    PubMed  Google Scholar 

  70. De-Deus G, Reis C, Beznos D, de Abranches AM, Coutinho-Filho T, Paciornik S. Limited ability of three commonly used thermoplasticized gutta-percha techniques in filling oval-shaped canals. J Endod. 2008;34:1401–5.

    PubMed  Google Scholar 

  71. Moeller L, Wenzel A, Wegge-Larsen AM, Ding M, Kirkevang LL. Quality of root fillings performed with two root filling techniques. An in vitro study using micro-CT. Acta Odontol Scand. 2013;71:689–96.

    CAS  PubMed  Google Scholar 

  72. Keleş A, Alcin H, Kamalak A, Versiani MA. Oval-shaped canal retreatment with self-adjusting file: a micro-computed tomography study. Clin Oral Investig. 2014;18:1147–53.

    PubMed  Google Scholar 

  73. Keleş A, Alcin H, Kamalak A, Versiani MA. Micro-CT evaluation of root filling quality in oval-shaped canals. Int Endod J. 2014;47:1177–84.

    PubMed  Google Scholar 

  74. Siqueira JF Jr. Reaction of periradicular tissues to root canal treatment: benefits and drawbacks. Endod Topics. 2005;10:123–47.

    Google Scholar 

  75. Somma F, Cammarota G, Plotino G, Grande NM, Pameijer CH. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials. J Endod. 2008;34:466–9.

    PubMed  Google Scholar 

  76. Keleş A, Arslan H, Kamalak A, Akcay M, Sousa-Neto MD, Versiani MA. Removal of filling materials from oval-shaped canals using laser irradiation: a micro-computed tomographic study. J Endod. 2015;41:219–24.

    PubMed  Google Scholar 

  77. Al-Fouzan K, Al-Garawi Z, Al-Hezaimi K, Javed F, Al-Shalan T, Rotstein I. Effect of acid etching on marginal adaptation of mineral trioxide aggregate to apical dentin: microcomputed tomography and scanning electron microscopy analysis. Int J Oral Sci. 2012;4:202–7.

    CAS  PubMed  Google Scholar 

  78. Celikten B, F Uzuntas C, I Orhan A, Tufenkci P, Misirli M, O Demiralp K, et al. Micro-CT assessment of the sealing ability of three root canal filling techniques. J Oral Sci. 2015;57:361–6.

    CAS  PubMed  Google Scholar 

  79. Huang Y, Orhan K, Celikten B, Orhan AI, Tufenkci P, Sevimay S. Evaluation of the sealing ability of different root canal sealers: a combined SEM and micro-CT study. J Appl Oral Sci. 2018;26:e20160584.

    PubMed  PubMed Central  Google Scholar 

  80. Kim SY, Kim HC, Shin SJ, Kim E. Comparison of gap volume after retrofilling using 4 different filling materials: evaluation by micro-computed tomography. J Endod. 2018;44:635–8.

    PubMed  Google Scholar 

  81. Neves AA, Jaecques S, Van Ende A, Cardoso MV, Coutinho E, Luhrs AK, et al. 3D-microleakage assessment of adhesive interfaces: exploratory findings by μCT. Dent Mater. 2014;30:799–807.

    PubMed  Google Scholar 

  82. Zaslansky P, Fratzl P, Rack A, Wu MK, Wesselink PR, Shemesh H. Identification of root filling interfaces by microscopy and tomography methods. Int Endod J. 2011;44:395–401.

    CAS  PubMed  Google Scholar 

  83. Cavenago BC, Pereira TC, Duarte MA, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47:120–6.

    CAS  PubMed  Google Scholar 

  84. Silva EJ, Perez R, Valentim RM, Belladonna FG, De-Deus GA, Lima IC, et al. Dissolution, dislocation and dimensional changes of endodontic sealers after a solubility challenge: a micro-CT approach. Int Endod J. 2017;50:407–14.

    CAS  PubMed  Google Scholar 

  85. Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Evaluation of physicochemical properties of root-end filling materials using conventional and micro-CT tests. J Appl Oral Sci. 2017;25:374–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. De-Deus G, Scelza MZ, Neelakantan P, Sharma S, Neves Ade A, Silva EJ. Three-dimensional quantitative porosity characterization of syringe- versus hand-mixed set epoxy resin root canal sealer. Braz Dent J. 2015;26:607–11.

    PubMed  Google Scholar 

  87. Guerrero F, Berastegui E. Porosity analysis of MTA and Biodentine cements for use in endodontics by using micro-computed tomography. J Clin Exp Dent. 2018;10:e237–e40.

    PubMed  PubMed Central  Google Scholar 

  88. Keleş A, Ahmetoglu F, Uzun I. Quality of different gutta-percha techniques when filling experimental internal resorptive cavities: a micro-computed tomography study. Aust Endod J. 2014;40:131–5.

    PubMed  Google Scholar 

  89. Kim TO, Cheung GS, Lee JM, Kim BM, Hur B, Kim HC. Stress distribution of three NiTi rotary files under bending and torsional conditions using a mathematic analysis. Int Endod J. 2009;42:14–21.

    CAS  PubMed  Google Scholar 

  90. Peters OA, Morgental RD, Schulze KA, Paqué F, Kopper PM, Vier-Pelisser FV. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action. Int Endod J. 2014;47:505–13.

    CAS  PubMed  Google Scholar 

  91. Bonessio N, Pereira ES, Lomiento G, Arias A, Bahia MG, Buono VT, et al. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys. Int Endod J. 2015;48:441–50.

    CAS  PubMed  Google Scholar 

  92. Kim HC, Sung SY, Ha JH, Solomonov M, Lee JM, Lee CJ, et al. Stress generation during self-adjusting file movement: minimally invasive instrumentation. J Endod. 2013;39:1572–5.

    PubMed  Google Scholar 

  93. Santos Lde A, Bahia MG, de Las Casas EB, Buono VT. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis. J Endod. 2013;39:1444–7.

    PubMed  Google Scholar 

  94. Keleș A, Torabinejad M, Keskin C, Sah D, Uzun I, Alçin H. Micro-CT evaluation of voids using two root filling techniques in the placement of MTA in mesial root canals of Vertucci type II configuration. Clin Oral Investig. 2018;22:1907–13.

    PubMed  Google Scholar 

  95. Ordinola-Zapata R, Bramante CM, Duarte MA, Cavenago BC, Jaramillo D, Versiani MA. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas. J Appl Oral Sci. 2014;22:509–15.

    PubMed  PubMed Central  Google Scholar 

  96. Lloyd A, Navarrete G, Marchesan MA, Clement D. Removal of calcium hydroxide from Weine Type II systems using photon-induced photoacoustic streaming, passive ultrasonic, and needle irrigation: a microcomputed tomography study. J Appl Oral Sci. 2016;24:543–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma J, Shen Y, Yang Y, Gao Y, Wan P, Gan Y, et al. In vitro study of calcium hydroxide removal from mandibular molar root canals. J Endod. 2015;41:553–8.

    PubMed  Google Scholar 

  98. Ikram OH, Patel S, Sauro S, Mannocci F. Micro-computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. Int Endod J. 2009;42:1071–6.

    CAS  PubMed  Google Scholar 

  99. Schroeder AA, Ford NL, Coil JM. Micro-computed tomography analysis of post space preparation in root canals filled with carrier-based thermoplasticized gutta-percha. Int Endod J. 2017;50:293–302.

    CAS  PubMed  Google Scholar 

  100. Uzun I, Keleş A, Arslan D, Güler B, Keskin C, Gündüz K. Influence of oval and circular post placement using different resin cements on push-out bond strength and void volume analysed by micro-CT. Int Endod J. 2016;49:1175–82.

    CAS  PubMed  Google Scholar 

  101. Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, et al. Comparative accuracy of the clearing technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50:90–6.

    CAS  PubMed  Google Scholar 

  102. Versiani MA, Sousa-Neto MD, Pécora JD. Pulp pathosis in inlayed teeth of the ancient Mayas: a microcomputed tomography study. Int Endod J. 2011;44:1000–4.

    CAS  PubMed  Google Scholar 

  103. Kalatzis-Sousa NG, Spin-Neto R, Wenzel A, Tanomaru-Filho M, Faria G. Use of micro-computed tomography for the assessment of periapical lesions in small rodents: a systematic review. Int Endod J. 2017;50:352–66.

    CAS  PubMed  Google Scholar 

  104. Balto K, Muller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res. 2000;79:35–40.

    CAS  PubMed  Google Scholar 

  105. Chen I, Karabucak B, Wang C, Wang HG, Koyama E, Kohli MR, et al. Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material as root-end filling materials in dogs. J Endod. 2015;41:389–99.

    PubMed  PubMed Central  Google Scholar 

  106. Martins CM, Sasaki H, Hirai K, Andrada AC, Gomes-Filho JE. Relationship between hypertension and periapical lesion: an in vitro and in vivo study. Braz Oral Res. 2016;30:e78.

    PubMed  Google Scholar 

  107. Oliveira KM, Nelson-Filho P, da Silva LA, Kuchler EC, Gaton-Hernandez P, da Silva RA. Three-dimensional micro-computed tomography analyses of induced periapical lesions in transgenic mice. Ultrastruct Pathol. 2015;39:402–7.

    PubMed  Google Scholar 

  108. von Stechow D, Balto K, Stashenko P, Muller R. Three-dimensional quantitation of periradicular bone destruction by micro-computed tomography. J Endod. 2003;29:252–6.

    Google Scholar 

  109. Basrani B, Versiani MA. Contemporary strategies for teaching internal anatomy of teeth. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 373–90.

    Google Scholar 

  110. Nassri MR, Carlik J, da Silva CR, Okagawa RE, Lin S. Critical analysis of artificial teeth for endodontic teaching. J Appl Oral Sci. 2008;16:43–9.

    PubMed  PubMed Central  Google Scholar 

  111. Buchanan LS. Everything’s changed except the anatomy! Dent Today. 2012;31(100):2, 4–5.

    Google Scholar 

  112. Gutmann JL, Rigsby S. Meeting age old challenges in root canal procedures with contemporary technological assessments. ENDO. 2015;9:107–10.

    Google Scholar 

  113. Kato A, Ohno N. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig. 2009;13:43–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Versiani, M.A., Keleș, A. (2020). Applications of Micro-CT Technology in Endodontics. In: Orhan, K. (eds) Micro-computed Tomography (micro-CT) in Medicine and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16641-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16641-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16640-3

  • Online ISBN: 978-3-030-16641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics