Skip to main content

Nanotoxicity: Sources and Effects on Environment

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

With the advancement of nanotechnology, use of nanomaterials has substantially increased due to its optical, magnetic, electrical, and catalytic properties. A significant rise in the use of nanomaterials in various fields like tissue engineering, biosensors, drug delivery, optical electronics, materials science, and many more has been observed in recent years. The sources of these nanomaterials can be natural, incidental, or engineered. The various nanomaterials commonly found in our environment are quantum dots, carbon nanotubes, metal- or metalloid-based nanoparticles, nanostructured flame retardants, fullerenes, etc. With the increased use, environmental exposure to nanomaterials is inevitable, resulting in an increased research in nanotoxicity. The toxicity of nanomaterials depends on their shape, size, amount, conformation, and reactivity. They have a potential to indirectly affect the environmental organisms and enzymes upon contact with their surface. They have impacts on the environment in three possible ways: (1) direct effect on species, (2) transformation of biologically available compounds and nutrients upon interaction with other pollutants, and (3) structural changes of nonliving environment. They disrupt the carbon and nitrogen cycle of the aquatic ecosystem, stress photosynthetic organisms, generate reactive oxygen species, and change the biodiversity. They are persistent and tend to accumulate in the environment increasing the toxicity. A database including all the publications of various nanomaterials and their impact on environmental health and safety has been generated by the ICON (International Council of Nanotechnology) which emphasizes on rousing trends in the field of nanotoxicology. The objective of this chapter is to introduce the different sources of nanomaterials and their effects and mechanisms of toxicity in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarifi S, Ali D, Verma A et al (2013) Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32(4):296–307

    Article  PubMed  Google Scholar 

  • Arnot JA, Gobas FAP (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    Article  CAS  Google Scholar 

  • Arul Prakash F, Dushendra Babu GJ, Lavanya M et al (2011) Toxicity studies of aluminium oxide nanoparticles in cell lines. Int J Nanotechnol Appl 5(2):99–107

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart. Article ID 689419. https://doi.org/10.1155/2014/689419

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11

    PubMed  PubMed Central  Google Scholar 

  • Batista CAS, Larson RG, Kotov NA (2015) Nonadditivity of nanoparticle interactions. Science 350(6257):1242477

    Article  PubMed  Google Scholar 

  • Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP et al (2014) A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci 137(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Environmental Working Group (2017) Retrieved EWG’s 2017 guide to safer sunscreens

    Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA et al (2011) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–154

    Article  PubMed  Google Scholar 

  • Ghosh M, Chakraborty A, Mukherjee A (2013) Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol 33(10):1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52

    Article  CAS  PubMed  Google Scholar 

  • Hou W-C, Westerhoff P, Posner JD (2013) Biological accumulation of engineered nanomaterials: a review of current knowledge. Environ Sci: Processes Impacts 15:103–122

    CAS  Google Scholar 

  • Ibupoto Z, Khun K, Beni V, Liu X, Willander M (2013) Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. Sensors 13:7926–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Seo JH, Choi BH et al (2014) Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl Mater Interfaces 6(22):20242–20253

    Article  CAS  PubMed  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol 86(3):682–689. https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781

    Article  CAS  PubMed  Google Scholar 

  • Khalili Fard J, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  CAS  PubMed  Google Scholar 

  • McCarthy J, Inkielewicz-Stępniak I, Corbalan JJ et al (2012) Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol 25(10):2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Article  CAS  Google Scholar 

  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A et al (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178(6):2587–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez DA (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6(2):241–251

    Article  CAS  Google Scholar 

  • Murugadoss S, Lison D, Godderis L et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ock K, Jeon WI II, Ganbold EO et al (2012) Real time monitoring of glutathione triggered thiopurine anticancer drug release in live cells investigated by surface enhanced Raman scattering. Anal Chem 84(5):2172–2178

    Article  CAS  PubMed  Google Scholar 

  • Pagni J (2010) Amroy aims to become nano-leader. European Plastics News. Archived from the original on 10 July 2011

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart. Article ID 963961. https://doi.org/10.1155/2014/963961

    Article  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13(8):3287–3299

    Article  CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore pp 33–58

    Google Scholar 

  • Silicon (Si) nanoparticles – properties, applications (2013) AZoNano

    Google Scholar 

  • Silicon dioxide, silica (SiO2) nanoparticles – properties, applications (2013) AZoNano

    Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1. https://doi.org/10.3402/nano.v1i0.5358

    Article  Google Scholar 

  • Srikanth K, Mahajan A, Pereira E (2015) Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells. J Appl Toxicol 35(10):1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Stadnicka J, Schirmer K, Ashauer R (2012) Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environ Sci Technol 46(6):3273–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821

    Article  CAS  Google Scholar 

  • USNIOSH (U.S. National Institute for Occupational Safety and Health) (2016) Taking stock of the OSH challenges of nanotechnology: 2000–2015

    Google Scholar 

  • Valdiglesias V, Costa C, Kilic G et al (2013) Cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 55C:92–100

    Article  Google Scholar 

  • Wilson W (2010) The project on emerging nanotechnologies. International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/analysis_draft/

  • Xiong S, George S, Ji Z, Lin S, Yu H, Damoiseaux R et al (2013) Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Arch Toxicol 87(1):99–109

    Article  CAS  PubMed  Google Scholar 

  • Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24(3):400–413

    CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirimer L, Thanh NTK, Loizidou M et al (2011) Toxicology and clinical potential of nanoparticles. Nano Today 6(6):585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C-M, Wang W-X (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    Article  CAS  PubMed  Google Scholar 

  • Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chang Y, Chang Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angana Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, A., Sarkar, D., Poddar, K. (2019). Nanotoxicity: Sources and Effects on Environment. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_9

Download citation

Publish with us

Policies and ethics