Skip to main content

Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1044 Accesses

Abstract

Soil-based ecosystems have a vital role in preserving soil status, ecosystem functions, and crop productivity. Soil microorganisms, soil fertility, and soil health are confronted by new natural stressors that include iron-based nanomaterials. Although these developing pollutants are being released into most ecosystems, including agricultural fields, their potential influences on the soil and its characteristics remain to be explored. To investigate the outcomes of magnetic nanoparticles on soil microbial diversity, the researchers carried out a comprehensive literature search. This chapter defines how to synthesize magnetic nanomaterials and how to discover the possible threats posed by the positive and negative results of iron-based nanomaterials (IO-NMs) on the soil ecosystem. Also discussed are the influences of nano-iron on microbial activities, soil productivity, soil health, and arsenic remediation. IO-NMs are a disturbing overview of the emerging contaminants of terrestrial ecosystems. Their impacts on soil characteristics, besides their effects on microbial populations and abundant key functional associations, are of specific interest for environmental hazard assessment. Our discussion recommends that the toxicity of IO-NMs to functions of the soil must be considered before recommending their use in prospective research in agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1-3):38–49

    Article  CAS  PubMed  Google Scholar 

  • Andrew B, Cundy LH, Raymond LD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1-3):42–51

    Article  CAS  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Kole C (2016) Chapter 1. Plant nanotechnology: an overview on concepts, strategies, and tools. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, Cham, pp 1–14

    Google Scholar 

  • Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IP (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1-3):73–80

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao TS (2014) A review: applications of iron nanomaterials in bioremediation and in detection of pesticide contamination. Int J Nanopart 7(1):73–80

    Article  CAS  Google Scholar 

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911

    Article  CAS  Google Scholar 

  • Bumb A, Brechbiel MW, Choyke PL, Fugger L, Eggeman A, Prabhakaran D, Hutchinson J, Dobson PJ (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19(33):335601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DV, Zhu S, Pablico-Lansigan MP (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173

    Article  CAS  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Article  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J, Xie X (2017) Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soil Sediment 17:841–851

    Article  CAS  Google Scholar 

  • Cao Y, Zhang S, Zhong Q, Wang G, Xu X, Li T, Wang L, Jia Y, Li Y (2018) Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf 162:464–473

    Article  CAS  PubMed  Google Scholar 

  • Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E (2016) Impact of nanoscale zero-valent iron on bacteria is growth phase dependent. Chemosphere 144:352–359

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164–181

    Article  CAS  PubMed  Google Scholar 

  • Chen HD, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. Trends Anal Chem 30(7):1095–1108

    Article  CAS  Google Scholar 

  • Cheng W, Xu J, Wang YJ, Wu F, Xu X, Li JJ (2015) Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. J Colloid Interface Sci 445:93–101

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Xu XY, Wu F, Li JJ (2016a) Synthesis of cavity–containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Mater Lett 164:210–212

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Cui L, Xu P, Zhang C, Liu Y (2016b) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  PubMed  Google Scholar 

  • De Jaeger N, Demeye H, Findy R, Sneyer R, Vanderdeelen J, Van der Meeren P, Laethem M (1991) Particle sizing by photon correlation spectroscopy part I: monodisperse latices: influence of scattering angle and concentration of dispersed material. Part Part Syst Char 8:179–186

    Article  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Cheng G, Wang Y, Zhuang D (2017) Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci Total Environ 578:577–585

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Song WB, Zhang ZM (2011) Recent advances in research on iron nutrition of peanut. J Peanut Sci 40:39–43

    Google Scholar 

  • Dung TT, Danh TM, Hoa LTM, Chien DM, Duc NH (2009) Structural and magnetic properties of starch–coated magnetite nanoparticles. J Exp Nanosci 4:259–267

    Article  CAS  Google Scholar 

  • Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Oughton DH, Joner EJ (2014) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368:189–200

    Article  CAS  Google Scholar 

  • Etemadi N, Sepahy AA, Mohebali G, Yazdian F, Omidi M (2018) Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int J Biol Macromol 120:1801–1809

    Article  CAS  PubMed  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero–valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) An international technical workshop Investing in sustainable crop intensification: the case for improving soil health. Integrated Crop Management FAO Rome, 22–24 July

    Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilizations, functionatization, characterization and application. J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  • Flury B, Eggenberger U, Mäder U (2009a) First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater. Appl Geochem 24:687–696

    Article  CAS  Google Scholar 

  • Flury B, Frommer J, Eggenberger U, Mäder U, Nachtegaal M, Kretzschmar R (2009b) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol 43:6786–6792

    Article  CAS  PubMed  Google Scholar 

  • Foner S (1959) Versatile and sensitive vibrating-sample magnetometer. Rev Sci Instrum 30:548

    Article  Google Scholar 

  • Galdames A, Mendoza A, Orueta M, De Soto García IS, Sánchez M, Virto I, Vilas JL (2017) Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resour Effic Technol 3:166–176

    Article  Google Scholar 

  • Ghrair AM, Ingwersen J, Streck T (2010) Immobilization of heavy metals in soils amended by nanoparticulate zeolitic tuff: sorption–desorption of cadmium. J Plant Nutr Soil Sci 173:852–860

    Article  CAS  Google Scholar 

  • Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang W (2003) Nanotechnology takes root. Civ Eng 73(5):64–69

    Google Scholar 

  • Green M, Brjen PO (2001) The preparation of organically functionalised chromium and nickel nanoparticles. Chem Commun 19:1912–1913

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2012) Zero-valent iron encapsulated chitosan nanospheres – a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 86:150–155

    Article  CAS  PubMed  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22(11):8094–8123

    Article  CAS  Google Scholar 

  • He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34

    Article  CAS  Google Scholar 

  • He SY, Feng YZ, Gu N, Zhang Y, Lin XG (2011a) The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environ Pollut 159:3468–3473

    Article  CAS  PubMed  Google Scholar 

  • He SY, Feng YZ, Ren HX, Zhang Y, Gu N, Lin XG (2011b) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soil Sediment 11:1408–1417

    Article  CAS  Google Scholar 

  • He SY, Feng YZ, Ni J, Sun YF, Xue LH, Feng YF, Yu YL, Lin XG, Yang LZ (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Article  CAS  PubMed  Google Scholar 

  • Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D, Huang Q, Fan CH (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2017) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ 574:1599–1610

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Zeng G, Feng C, Hu S, Jiang X, Tang L, Su F, Zhang Y, Zeng W, Liu H (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951

    Article  CAS  PubMed  Google Scholar 

  • Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  PubMed  Google Scholar 

  • Illés E, Tombácz E (2003) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf A Physicochem Eng Asp 203(1–3):99–109

    Article  CAS  Google Scholar 

  • Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312

    Article  CAS  Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70(3):418–425

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang J, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25(5):749–760

    Article  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Change Biol 11:575–587

    Article  Google Scholar 

  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555–4560

    Article  CAS  PubMed  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim JS, Shea PJ, Yang JE, Kim JE (2007) Halide salts accelerate degradation of high explosives by zero-valent iron. Environ Pollut 147:634–641

    Article  CAS  PubMed  Google Scholar 

  • Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Tilton RD (2010) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Sci Technol 45:5253–5259

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra SY, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Koesnarpadi S, Santosa SJ, Siswanta D, Rusdiarso B (2017) Humic acid coated Fe3O4 nanoparticle for phenol sorption. Indones J Chem 17(2):274–283

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    Article  CAS  PubMed  Google Scholar 

  • Lei C, Sun Y, Tsang DCW, Lin D (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30

    Article  CAS  PubMed  Google Scholar 

  • Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    Article  CAS  PubMed  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  PubMed  Google Scholar 

  • Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Li X, Gui X, Rui Y, Ji W, Nhan L, Yu Z, Penga S (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Q, Gao S, Shang JK (2012a) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem Eng J 185–186:127–135

    Article  CAS  Google Scholar 

  • Li YC, Yu S, Strong J, Wang HL (2012b) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? J Soil Sediment 12:683–693

    Article  CAS  Google Scholar 

  • Limbach LK, Grass RN, Stark WJ (2009) Physico-chemical differences between particle- and molecule-derived toxicity: can we make inherently safe nanoparticles? Chimia 63:38–43

    Article  CAS  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long–term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–1545

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Zhao ZS, Hang GB (2008) Coating Fe3O4 magnetic nanoparticle with humic acids for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Article  CAS  PubMed  Google Scholar 

  • Liu RQ, Zhao DY (2007a) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502

    Article  CAS  PubMed  Google Scholar 

  • Liu RQ, Zhao DY (2007b) In situ immobilization of Cu (II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang YH, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Majetich SA, Tiltin RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    Article  CAS  PubMed  Google Scholar 

  • Ludwig RD, Su C, Lee TR, Wilkin RT, Acree SD, Ross RR, Keele A (2007) In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulphate and sodium dithionite: a field investigation. J Environ Sci Technol 41(15):5299–5305

    Article  CAS  Google Scholar 

  • Mahmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal: a review. Environ Sci Pollut Res 20:1239–1260

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011) Assessing the in vitro and in vivo toxicity of super paramagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  CAS  PubMed  Google Scholar 

  • Mak MSH, Rao P, Lo IMC (2009) Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res 43:4296–4304

    Article  CAS  PubMed  Google Scholar 

  • Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal action and selective toxicity of zero-valent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323

    Article  CAS  PubMed  Google Scholar 

  • Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Mimmo T, Del Buono D, Terzano R, Tomasi N, Vigani G, Crecchio G, Pinton R, Zocchi G (2014) Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur J Soil Sci 65:629–642

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1991) Correcting iron deficiencies in annual and perennial plants: present technologies and future prospects. Plant Soil 43:315–321

    CAS  Google Scholar 

  • Nĕmeček J, Lhotský O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485-486:739–747

    Article  CAS  PubMed  Google Scholar 

  • Ney A, Poulopoulos P, Farle M, Baberschke K (2000) Absolute determination of Co magnetic moments: ultrahigh-vacuum high-Tc SQUID magnetometry. Phys Rev B 62:11336–11339

    Article  CAS  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B (2015a) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt–transgenic cotton. Front Plant Sci 6:1263–1272

    PubMed  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015b) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Zhang D, Zhang S, Zhang X, Meng Z, Cai Y (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton–like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190(1–3):559–565

    Article  CAS  PubMed  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JK, Park JM (2011) Iron oxide–based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36(1):168–189

    Article  CAS  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20:1041–1049

    Article  CAS  Google Scholar 

  • Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–210:193–198

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Wu J, Xu Y, Fang Z, Zheng L, Cheng W, Tsang EP, Fang J, Zhao D (2017) Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng 106:515–522

    Article  Google Scholar 

  • Rajendran K, Balakrishnan GS, Kalirajan J (2015) Synthesis of magnetite nanoparticles for arsenic removal from groundwater pond. Int J Pharm Tech Res 8(4):670–677

    CAS  Google Scholar 

  • Rao PV, Gan SH (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16:371–375

    Article  CAS  PubMed  Google Scholar 

  • Rashid MI, Price NT, Pinilla MÁ, O’Shea KE (2017a) Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–360

    Article  CAS  PubMed  Google Scholar 

  • Rashid MI, Shahzad T, Shahid M, Imran M, Dhavamani J, Ismail IM, Basahi JM, Almeelbi T (2017b) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Rui Y, Zhang P, Zhang Y, Ma Y, He X, Gui X, Li Y, Zhang J, Zheng L, Chu S, Guo Z, Chai Z, Zhao Y, Zhang Z (2015) Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ Pollut 198:8–14

    Article  CAS  PubMed  Google Scholar 

  • Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M (2014) Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104:184–189

    Article  CAS  PubMed  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and DNAPL targeting in saturated porous media. Environ Eng Sci 24:45–57

    Article  CAS  Google Scholar 

  • Sánchez-Alcalá I, Del Campillo MD, Barrón V, Torrent J (2014) Evaluation of preflooding effects on iron extract ability and phytoavailability in highly calcareous soil in containers. J Plant Nutr Soil Sci 177:150–158

    Article  CAS  Google Scholar 

  • Santosa SJ, Tanaka S, Siswanta D, Kunarti ES, Sudiono S, Rahmanto WH (2007) Indonesian peat soil-derived humic acids, its characterization, immobilization and performance as metal adsorbent. In: Proceedings of International Conference on Chemical Sciences (ICCS), Yogyakarta

    Google Scholar 

  • Sastry RK, Rao NH, Cahoon R, Tucker K (2007) Can nanotechnology provide the innovations for a second green revolution in Indian agriculture? In: Proceedings of the Nano Scale Science and Engineering Grantees Conference, Arlington, VA

    Google Scholar 

  • Shah V, Belozerova I (2008) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148

    Google Scholar 

  • Shih M (2005) An overview of arsenic removal by pressure-driven membrane processes. Desalination 172:85–97

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of HCH-contaminated soil. J Hazard Mater 35:258–259

    Google Scholar 

  • Smedley PL, Kinniburg DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Song K, Kim W, Suh CY, Shin D, Ko KS, Ha K (2013) Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal. Powder Technol 246:572–574

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zero-valent iron (nZVI): from synthesis to environmental applications. J Chem Eng 287:618–632

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry, genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120(1-3):47–56

    Article  CAS  PubMed  Google Scholar 

  • Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticle. Colloids Surf A Physicochem Eng Aspects 308:60–66

    Article  CAS  Google Scholar 

  • Suominen K, Verta M, Marttinen S (2014) Hazardous organic compounds in biogas plant end products–soil burden and risk to food safety. Sci Total Environ 492:192–199

    Article  CAS  Google Scholar 

  • Surowiec Z, Budzyński M, Durak K, Czernel G (2017) Synthesis and characterization of iron oxide magnetic nanoparticles. Nukleonika 62(2):73–77

    Article  CAS  Google Scholar 

  • Tan KH (1993) Principles of soils chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634

    Article  CAS  PubMed  Google Scholar 

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zero-valent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242–contaminated soil. Environ Pollut 173:38–46

    Article  CAS  PubMed  Google Scholar 

  • Tombacz E, Horvat M, Illes E (2006) Magnetite in aqueous medium: coating its surface and surface coated with it. Rom Rep Phys 58:281–286

    CAS  Google Scholar 

  • Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Tuğba Danalıoglŭ S, Bayazit SS, Kerkezc Ö, Alhogbi BG, Abdel Salamd M (2017) Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid-coated Fe3O4 nanoparticles. Chem Eng Res Des 123:259–267

    Article  CAS  Google Scholar 

  • Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 66:1415–1420

    Article  CAS  Google Scholar 

  • Vilardi G, Di Palma L, Verdone N (2018) On the critical use of zero-valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. J Water Process Eng 22C:109–122

    Article  Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76

    Article  CAS  PubMed  Google Scholar 

  • Wang DP (2007) Current status and future strategies for development of transgenic plants in China. J Integr Plant Biol 49:1281–1283

    Article  Google Scholar 

  • Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118

    Article  CAS  Google Scholar 

  • Wang B, Yin JJ, Zhou X, Kurash I, Chai Z, Zhao Y, Feng W (2013) Physico-chemical origin for free radical generation of iron oxide nanoparticles in bio-microenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 117:383–392

    Article  CAS  Google Scholar 

  • Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste–activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 11(6):25857

    Article  CAS  Google Scholar 

  • Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H (2010) Sono–assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533

    Article  CAS  PubMed  Google Scholar 

  • Wu HH, Yin JJ, Wamer WG, Zeng MY, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22:86–94

    Article  CAS  PubMed  Google Scholar 

  • Xie YK, Dong H, Zeng G, Tang L, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean–up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang Y, Westerhoff P, Hristovski K, Jin VL (2014) Metal and nanoparticle occurrence in biosolid-amended soils. Sci Total Environ 485-486:441–449

    Article  CAS  PubMed  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Li L, Wang L, Wang S, Li S, Du J, Zhang S, Shou H (2015) MPK3/MPK6 are involved in iron deficiency–induced ethylene production in Arabidopsis. Front Plant Sci 6:953

    PubMed  PubMed Central  Google Scholar 

  • Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10(10):1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar SM, Agrawal GK, Rakwal R, Fukao Y (2015) Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front Plant Sci 6:592

    PubMed  PubMed Central  Google Scholar 

  • Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero-valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45:2401–2414

    Article  CAS  PubMed  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C (2013) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 435:85–90

    Article  CAS  Google Scholar 

  • Zhou L, Thanh TL, Gong J, Kim JH, Kim EJ, Chang YS (2014) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zero-valent iron. Chemosphere 104:155–161

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810–826

    Article  CAS  PubMed Central  Google Scholar 

  • Zuo Y, Zhang FS (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasem, K.K., Mostafa, M., Abd-Elsalam, K.A. (2019). Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_14

Download citation

Publish with us

Policies and ethics