Skip to main content

Spatial-Temporal Multi-Task Learning for Within-Field Cotton Yield Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11439))

Abstract

Understanding and accurately predicting within-field spatial variability of crop yield play a key role in site-specific management of crop inputs such as irrigation water and fertilizer for optimized crop production. However, such a task is challenged by the complex interaction between crop growth and environmental and managerial factors, such as climate, soil conditions, tillage, and irrigation. In this paper, we present a novel Spatial-temporal Multi-Task Learning algorithm for within-field crop yield prediction in west Texas from 2001 to 2003. This algorithm integrates multiple heterogeneous data sources to learn different features simultaneously, and to aggregate spatial-temporal features by introducing a weighted regularizer to the loss functions. Our comprehensive experimental results consistently outperform the results of other conventional methods, and suggest a promising approach, which improves the landscape of crop prediction research fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bastiaanssen, W.G., Ali, S.: A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 94(3), 321–340 (2003)

    Article  Google Scholar 

  2. Hebbar, K., et al.: Predicting cotton production using infocrop-cotton simulation model, remote sensing and spatial agro-climatic data. Curr. Sci. 95, 1570–1579 (2008)

    Google Scholar 

  3. Akay, D., Atak, M.: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32(9), 1670–1675 (2007)

    Article  Google Scholar 

  4. Sugihara, G., May, R.M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734 (1990)

    Article  Google Scholar 

  5. Garcia, O.: A stochastic differential equation model for the height growth of forest stands. Biometrics 39, 1059–1072 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, W., Cui, S., Torrion, J., Rajan, N.: Data-driven precision agriculture: opportunities and challenges. In: Soil-Specific Farming, pp. 366–385. CRC Press (2015)

    Google Scholar 

  7. Jiang, Z., Liu, C., Hendricks, N.P., Ganapathysubramanian, B., Hayes, D.J., Sarkar, S.: Predicting county level corn yields using deep long short term memory models, arXiv preprint arXiv:1805.12044 (2018)

  8. Mkhabela, M., Bullock, P., Raj, S., Wang, S., Yang, Y.: Crop yield forecasting on the canadian prairies using MODIS NDVI data. Agric. Forest Meteorol. 151(3), 385–393 (2011)

    Article  Google Scholar 

  9. Bolton, D.K., Friedl, M.A.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. Forest Meteorol. 173, 74–84 (2013)

    Article  Google Scholar 

  10. Schlenker, W., Roberts, M.J.: Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. 106(37), 15594–15598 (2009)

    Article  Google Scholar 

  11. Lobell, D.B., Burke, M.B.: On the use of statistical models to predict crop yield responses to climate change. Agric. Forest Meteorol. 150(11), 1443–1452 (2010)

    Article  Google Scholar 

  12. Dahikar, S.S., Rode, S.V.: Agricultural crop yield prediction using artificial neural network approach. IJIREEICE 2(1), 683–686 (2014)

    Google Scholar 

  13. Oliveira, I., Cunha, R.L., Silva, B., Netto, M.A.: A scalable machine learning system for pre-season agriculture yield forecast, arXiv preprint arXiv:1806.09244 (2018)

  14. You, J., Li, X., Low, M., Lobell, D., Ermon, S.: Deep Gaussian process for crop yield prediction based on remote sensing data. In: AAAI, pp. 4559–4566 (2017)

    Google Scholar 

  15. Ji, B., Sun, Y., Yang, S., Wan, J.: Artificial neural networks for rice yield prediction in mountainous regions. J. Agric. Sci. 145(3), 249–261 (2007)

    Article  Google Scholar 

  16. Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.-T., Ramakrishnan, N.: Multi-task learning for spatio-temporal event forecasting. In: Proceedings of KDD 2015, pp. 1503–1512. ACM (2015)

    Google Scholar 

  17. Zhou, J., Yuan, L., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease progression. In: Proceedings of KDD 2011, pp. 814–822. ACM (2011)

    Google Scholar 

  18. Balikas, G., Moura, S., Amini, M.-R.: Multitask learning for fine-grained Twitter sentiment analysis. In: Proceedings of SIGIR 2017, pp. 1005–1008. ACM (2017)

    Google Scholar 

  19. Zhang, Y., Zhang, P., Yan, Y.: Attention-based LSTM with multi-task learning for distant speech recognition. In: Interspeech 2017, pp. 3857–3861 (2017)

    Google Scholar 

  20. Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.S.: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification. In: CVPR, vol. 1, no. 2, p. 6 (2017)

    Google Scholar 

  21. Xu, J., Tan, P.-N., Zhou, J., Luo, L.: Online multi-task learning framework for ensemble forecasting. IEEE Trans. Knowl. Data Eng. 29(6), 1268–1280 (2017)

    Article  Google Scholar 

  22. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction, arXiv preprint arXiv:1802.08714 (2018)

  23. Hanna, A., Harlan, P., Lewis, D.: Soil available water as influenced by landscape position and aspect 1. Agron. J. 74(6), 999–1004 (1982)

    Article  Google Scholar 

  24. Kitchen, N., Sudduth, K., Drummond, S.: Soil electrical conductivity as a crop productivity measure for claypan soils. J. Prod. Agric. 12(4), 607–617 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the U.S. National Science Foundation under the Grant CNS-1737634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, L.H. et al. (2019). Spatial-Temporal Multi-Task Learning for Within-Field Cotton Yield Prediction. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16148-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16147-7

  • Online ISBN: 978-3-030-16148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics