Skip to main content

Tracking India Within Precambrian Supercontinent Cycles

  • Chapter
  • First Online:
Geodynamics of the Indian Plate

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The term supercontinent generally implies grouping of formerly dispersed continents and/or their fragments in a close packing accounting for about 75% of earth’s landmass in a given interval of geologic time. The assembly and disruption of supercontinents rely on plate tectonic processes, and therefore, much speculation is involved particularly considering the debates surrounding the applicability of differential plate motion, the key to plate tectonics during the early Precambrian. The presence of Precambrian orogenic belts in all major continents is often considered as the marker of ancient collisional or accretionary sutures, which provide us clues to the history of periodic assembly of ancient supercontinents. Testing of any model assembly/breakup depends on precise age data and paleomagnetic pole reconstruction. The record of dispersal of the continents and release of enormous stress lie in extensional geological features, such as rift valleys, regionally extensive flood basalts, granite-rhyolite terrane, anorthosite complexes, mafic dyke swarms, and remnants of ancient mid-oceanic ridges.

Indian shield with extensive Precambrian rock records is known to bear signatures of the past supercontinents in a fragmentary manner. Vast tracts of Precambrian rocks exposed in peninsular India and in the Lesser Himalaya and the Shillong plateau further north and east provide valuable clues to global tectonic reconstructions and the geodynamics of the respective periods. The Indian shield is a mosaic of Archean cratonic nuclei surrounded by Proterozoic orogenic belts, which preserve the records of geologic events since the Paleoarchean/Eoarchean. Here we discuss the sojourn of the Indian plate from the Archean through Proterozoic, in light of available models for supercontinent assembly and breakup in the Precambrian. We also discuss the issues in constraining the configuration, which is mainly due to scanty exposures, lack of reliable paleomagnetic poles from different cratons, and their time of formation or amalgamation. In this chapter, we briefly review Precambrian geology of India to track her participation in the making of the supercontinents through time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK (2005) Geology and tectonics of NE India. J Geophys 26:35–49

    Google Scholar 

  • Acharyya SK, Roy A (2000) Tectonothermal history of the Central Indian Tectonic Zones and Reactivation of Major faults/shear Zones. J Geol Soc India 55:239–256

    Google Scholar 

  • Anderson JL, Cullers RL (1999) Paleo- and Mesoproterozoic granite plutonism of Colorado and Wyoming. Rock Mount Geol 34:149–164

    Article  Google Scholar 

  • Anderson JL, Morrison J (1992) The role of anorogenic granites in the Proterozoic crustal development of North America. In: Condie KC (ed) Proterozoic crustal evolution. Elsevier, New York, NY, pp 263–299

    Chapter  Google Scholar 

  • Andrew S. Merdith AS, Williams SE, Müller RD, Collins AS (2017) Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res 299:132–150

    Google Scholar 

  • Barley ME (1993) Volcanic, sedimentary and tectonic stratigraphic environments of the approximately 3.46 Ga Warrawoona Megasequesnce; a review. Precambrian Res 60:47–67

    Article  Google Scholar 

  • Barley ME, Groves DI (1992) Supercontinent cycles and distribution of metal deposits through time. Geology 17:826–829

    Article  Google Scholar 

  • Bhowmik SK (2006) Ultra-high temperature metamorphism and its significance in the Central Indian tectonic Zone. Lithos 92:485–505

    Article  Google Scholar 

  • Bhowmik SK, Basu SA, Speiring B, Raith MM (2005) Mesoproterozic reworking of Palaeoproterozoic ultrahigh temperature granulites in the Central Indian Tectonic Zone. J Petrol 46:1085–1119

    Article  Google Scholar 

  • Bhoumik SK, Bernhardt HJ, Dasgupta S (2010) Grenvillian age high-pressure upper amphibolite-granulite metamorphism in the Aravalli-Delhi Mobile Belt, Northwestern India: New evidence from monazite chemical age and its implication. Precambrian Research 178:168–184

    Article  Google Scholar 

  • Bhowmik SK, Wilde SA, Bhandari A, Pal T, Pant NC (2012) Growth of the greater Indian landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondw Res 22:54–72

    Article  Google Scholar 

  • Bierlein FP, Groves DI, Cawood PA (2009) Metallogeny of accretionary orogens - the connection between lithospheric processes and metal endowment. Ore Geol Rev 36:282–292

    Article  Google Scholar 

  • Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71(2):99–134

    Article  Google Scholar 

  • Bleeker W, Chamberlain KR, Kamo SL, Hamilton M, Kilian TM, Buchan KL (2008) Kaapvaal, Superior and Wyoming: nearest neighbours in superCraton Superia. Paper Number: 5222. American Geosciences Institute, Alexandria, VA

    Google Scholar 

  • Blewett RS (2002) Archaean tectonic processes: a case for horizontal shortening in the North Pilbara granite-greenstone terrane, Western Australia. Precambrian Res 113:67–120

    Article  Google Scholar 

  • Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN, Volozh YA (2008) The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res 160:23–45

    Article  Google Scholar 

  • Boger SD, Miller JML (2004) Terminal suturing of Gondwana and the onset of the Ross-delamarian orogeny: the cause and effect of an early Cambrian reconfiguration of plate motions. Earth Planet Sci Lett 219:35–48

    Article  Google Scholar 

  • Bond GC, Nickeson PA, Kominz MA (1984) Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth Planet Sci Lett 70:325–345

    Article  Google Scholar 

  • Bora S, Kumar S (2015) Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, Central India tectonic zone: implication for nature and tectonic setting of magmatism. Int Geol Rev 57:1686–1706

    Article  Google Scholar 

  • Bora S, Kumar S, Yi K, Kim N, Lee TH (2013) Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. J Asian Earth Sci 70-71:99–114

    Article  Google Scholar 

  • Bose S, Dunkley DJ, Dasgupta S, Das K, Arima M (2011) India–Antarctica–Australia–Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: evidence from new zircon U–Pb and monazite chemical age data from the Eastern Ghats Belt, India. Bull Geol Soc Am 123:2031–2049

    Article  Google Scholar 

  • Bose S, Das K, Kimura K, Hidaka H, Dasgupta A, Ghosh G, Mukhopadhyay J (2016a) Neoarchean tectonothermal imprints in the Rengali Province, Eastern India and their implication on the growth of Singhbhum Craton: evidence from zircon U-Pb SHRIMP data. J Metam Geol 34:743–764

    Article  Google Scholar 

  • Bose S, Das K, Torimoto J, Arima M, Dunkley DJ (2016b) Evolution of the Chilka Lake granulite complex, Northern Eastern Ghats Belt, India: first evidence of ~780 Ma decompression of the deep crust and its implication on the India–Antarctica correlation. Lithos 263:161–189

    Article  Google Scholar 

  • Bowring SA, Grotzinger JP (1992) Implications of new chronostratigraphy for tectonic evolution of Wopmay orogeny, North West Canadian shield. Am J Sci 292:1–20

    Article  Google Scholar 

  • Brookfield ME (1993) Neoproterozoic Laurentia-Australia fit. Geology 21:683–686

    Article  Google Scholar 

  • Bradley DC (2011) Secular trends in the geologic record and the supercontinent cycle. Earth Sci Rev 108:16–33

    Article  Google Scholar 

  • Brown M (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: when did earth first adopt a plate tectonics model of behavior? In: Condie KC, Pease V (eds) When did plate tectonics begin on planet earth? GSA special paper, vol 440. Geological Society of America, Boulder, CO, pp 97–128

    Chapter  Google Scholar 

  • Buick IS, Allen C, Pandit M, Rubatto D, Hermann J (2006) The Proterozoic magmatic and metamorphic history of the banded gneissic complex, Central Rajasthan, India: La-ICP-MS U/Pb zircon constraints. Precambrian Res 151:119–142

    Article  Google Scholar 

  • Burke KCA, Dewey JF (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 86:406–433

    Article  Google Scholar 

  • Burrett C, Berry R, (2000) Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia. Geology 28:103–106

    Article  Google Scholar 

  • Burrett C, Berry R (2002) A statistical approach to defining Proterozoic crustal provinces and testing continental reconstructions of Australia and Laurentia- SWEAT or AUSWUS? Gondw Res 5:109–122

    Article  Google Scholar 

  • Butterworth N, Steinberg D, Müller RD, Williams S, Merdith AS, Hardy S (2016) Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35:2847–2862

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Wooden JL, Xie X (2002) An Archaean impact layer from the Pilbara and Kaapvaal Cratons. Science 297:1325–1327

    Article  Google Scholar 

  • Cawood PA, Pisarevsky SA (2006) Was Baltica right-way-up or upside-down in the Neoproterozoic? J Geol Soc 163:753–759

    Article  Google Scholar 

  • Cawood PA, Kröner A, Pisarevsky SA (2006) Precambrian plate tectonics: Criteria and evidence. GSA Today 16:5–11

    Article  Google Scholar 

  • Chardon D, Jayananda M, Peucat JJ (2011) Lateral constructional flow of hot orogenic crust: insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst 12:Q02005. https://doi.org/10.1029/2010GC003398

    Article  Google Scholar 

  • Chatterjee N, Mazumadar AC, Bhattacharya A, Saikia RR (2007) Mesoproterozoic granulites of the Shillong–Meghalaya plateau: evidence of Westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Res 152:1–26

    Article  Google Scholar 

  • Chatterjee A, Das K, Bose A, Ganguly P, Hidaka H (2017) Zircon U-Pb SHRIMP and monazite EPMA U-Th-total Pb geochronology of granulites of the Western boundary, Eastern Ghats Belt, India: a new possibility for Neoproterozoic exhumation history. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection. Geological Society, London, Special Publications, vol 457. Geological Society of London, London, pp 105–140

    Google Scholar 

  • Chattopadhyay N, Mukhopadhyay D, Sengupta P (2012) Reactivation of basement: example from Anasagar Granite Gneiss Complex, Rajasthan, Western India. In: Mazumder R, Saha D (eds) Palaeoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 217–242

    Google Scholar 

  • Chattopadhyay A, Das K, Hayasaka Y, Sarkar A (2015a) Syn and post-tectonic granite plutonism in the Sausar Fold Belt, Central India: age constraints and tectonic implications. J Asian Earth Sci 107:110–121

    Article  Google Scholar 

  • Chattopadhyay S, Upadhyay D, Nanda JK, Mezger K, Pruseth KL, Berndt J (2015b) Proto-India was a part of Rodinia: evidence from Grenville-age suturing of the Eastern Ghats Province with the Paleoarchean Singhbhum Craton. Precambrian Res 266:506–529

    Article  Google Scholar 

  • Chaudhuri AK, Deb GK, Patranabis-Deb S, Sarkar S (2012) Paleogeographic and tectonic evolution of the Pranhita-Godavari Valley, Central India: a Stratigraphic perspective. American Journal of Science 312:766–815

    Article  Google Scholar 

  • Cheney ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia. Precambrian Res 79:3–24

    Article  Google Scholar 

  • Chetty TRK (2017) Proterozoic orogens of India. A critical window to Gondwana. Elsevier, Amsterdam, p 426

    Google Scholar 

  • Chetty TRK, Murthy DSN (1993) Landsat Thematic Mapper data applied to structural studies of the Eastern Ghats Granulite Terrane in part of Andhra Pradesh. J Geol Soc India 42:37–391

    Google Scholar 

  • Choudhary AK, Gopalan K, Sastry CA (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105:131–140

    Article  Google Scholar 

  • Clifford TN (1968) Radiometric dating and the pre-Silurian geology of Africa. In: Hamilton EI, Farquhar RM (eds) Radiometric dating for geologist. Interscience, London, pp 299–416

    Google Scholar 

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc Lond 159:631–644

    Article  Google Scholar 

  • Collins AS, Pisarevsky A (2005) Amalgamating Eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Sci Rev 71(3):229–270

    Article  Google Scholar 

  • Collins AS, Santosh M, Braun I, Clark C (2007) Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Res 155:125–138

    Article  Google Scholar 

  • Condie KC (2002) Breakup of Palaeoproterozoic supercontinent. Gondw Res 5:41–43

    Article  Google Scholar 

  • Condie KC (2005) TTG and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • Condie KC, Rosen OM (1994) Laurentia-Siberia connection revisited. Geology 22:168–170

    Article  Google Scholar 

  • Condie KC, Bickford ME, Aster RC, Belousova E, Scholl DW (2011) Episodic zircon age, Hf isotopic composition, and the preservation rate of the continental crust. Geol Soc Am Bull 123:951–957

    Article  Google Scholar 

  • Dalziel IWD (1991) Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601

    Article  Google Scholar 

  • Das K, Yokoyama K, Chakraborty PP, Sarkar A (2009) Basal tuffs and contemporaneity of the Chhattisgarh and Khariar basins based on new dates and geochemistry. J Geol 117:88–102

    Article  Google Scholar 

  • Dasgupta S, Sengupta P (2003) Indo-Antarctic correlation: a perspective from the Eastern Ghats Granulite Belt, India. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, vol 206. Geological Society of London, London, pp 131–143

    Google Scholar 

  • Dasgupta S, Bose S, Das K (2013) Tectonic evolution of the Eastern Ghats Belt. Precambrian Res 227:247–258

    Article  Google Scholar 

  • Dasgupta S, Bose S, Bhoumik SK, Sengupta P (2017) The Eastern Ghats Belt, India, in the context of supercontinent assembly. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection. Geological Society, London, Special Publications. Geological Society of London, London, p 457

    Google Scholar 

  • Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966

    Article  Google Scholar 

  • Davies GF (1999) Dynamic Earth plates, plumes and mantle convection. Cambridge University press, Cambridge. 458 p

    Book  Google Scholar 

  • Deb M, Thorpe R, Kristc D (2001) Hindoli Group of rocks in the Eastern fringe of the Aravalli-Delhi orogenic belt – Archean secondary greenstone belt or Proterozoic supracrustals. Gondw Res 5:879–883

    Article  Google Scholar 

  • Deshmukh T, Prabhakar N, Bhattacharya A, Madhavan K (2017) Late Paleoproterozoic clockwise PT history in the Mahakoshal Belt, Central Indian Tectonic Zone: implications for Columbia supercontinent assembly. Precambrian Res 298:56–78

    Article  Google Scholar 

  • Dewey JF (1969) Structure and sequence in the paratectonic Caledonides. In: Kay M (ed) North Atlantic geology and continental drift. American Association of Petroleum Geologists, Memoir, vol 12. American Association of Petroleum Geologists, Tulsa, OK, pp 309–335

    Google Scholar 

  • Dewey JF (2007) Origin and evolution of plate tectonics and the continental crust: a tectonic perspective. Geol Soc Am Spec Paper 142:10–17

    Google Scholar 

  • Dilek Y, Polat A (2008) Suprasubduction zone ophiolites and Archean tectonics. Geology 36:431–432

    Article  Google Scholar 

  • Dobmeier CJ, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geol Soc Lond Spec Publ 206(1):145–168

    Article  Google Scholar 

  • Eriksson PG, Catuneanu O, Nelson DR, Mueller WU, Altermann W (2004) Towards a synthesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 739–769

    Chapter  Google Scholar 

  • Ernst WG (1983) Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. J Metam Geol 1:305–329

    Article  Google Scholar 

  • Evans DAD, Mitchell RN (2011) Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39:443–446

    Article  Google Scholar 

  • Fitzsimons ICW (2003) Proterozoic basement provinces of Southern and Southwestern Australia, and their correlation with Antarctica. In: Proterozoic East Gondwana supercontinent assembly and breakup, vol 206. Geological Society of London, London, pp 93–130

    Google Scholar 

  • French JE, Heaman LM, Chacko T, Rivard B (2008) 1891–1883 Ma Southern Bastar Craton-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160:308–322

    Article  Google Scholar 

  • Ghosh SK, Chakravorty S, Bhalla JK, Paul DK, Sarkar A, Bishui PK, Gupta SN (1994) New Rb – Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in Middle to late Proterozoic crustal evolution. Indian Miner 48:33–44

    Google Scholar 

  • Ghosh G, Bose S, Das K, Dasgupta A, Yamamoto T, Hayasaka Y, Chakrabarti K, Mukhopadhyay J (2016) Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: insight from structural, fabric, and kinematic studies from the Rengali Province, Eastern India. J Struct Geol 83:156–179

    Article  Google Scholar 

  • Goswami JN, Mishra S, Wiedenbeck M, Ray SL, Saha AK (1995) 207Pb/206Pb ages from the OMG, the oldest recognized rock unit from Singhbhum–Orissa Iron Ore Craton, E. India. Curr Sci 69:1008–1012

    Google Scholar 

  • Gower CF, Ryan AB, Rivers T (1990) Mid-Proterozoic Laurentia-Baltica; an overview of its geological evolution and a summary of the contributions made by this volume. In: Gower CF, Ryan AB, Rivers T (eds) Mid-proterozoic Laurentia-Baltica. Geological Association of Canada Paper, vol 38. Geological Association of Canada, St. John’s, NL, pp 1–20

    Google Scholar 

  • Guitreau M, Mukusa SB, Loudin L, Krishnan S (2017) New constraints on early formation of Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Res 302:33–49

    Article  Google Scholar 

  • Gupta BC (1934) The Geology of Central Mewar. Geol SurvIndia Mem 65:107–168

    Google Scholar 

  • Gupta A (2004) A manual of the geology of India, Vol. I: Precambrian, Part IV: Northern and northwestern part of the Peninsula. Geological Survey of India Special Publication. Geological Survey of India, Kolkata, p 77

    Google Scholar 

  • Halverson GP, Dudás FÖ, Maloof AC, Bowring SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogra Palaeoclimatol Palaeoecol 256(3):103–129

    Article  Google Scholar 

  • Halverson GP, Hurtgen MT, Porter SM, Collins AS (2009) Neoproterozoic-Cambrian biogeochemical evolution. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on Southwestern Gondwana. Developments in Precambrian geology, vol 16. Elsevier, Amsterdam, pp 351–365

    Chapter  Google Scholar 

  • Hamilton WB (2007) Driving mechanism and 3-D circulation of plate tectonics. Geol Soc Am Spec Paper 433:1–25

    Google Scholar 

  • Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20

    Article  Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24(3):279–283

    Article  Google Scholar 

  • Harris LB (1993) Correlations of tectonothermal events between Central Indian Tectonic Zone and the Albany Mobile Belt of Western Australia. In: Findlay RH, Unrug R, Banks MR, Veveers JJ (eds) Gondwana Eight: assembly, evolution and dispersal. A.A. Balkema, Rotterdam, pp 165–180

    Google Scholar 

  • Hashizume K, Pinti DL, Orberger B, Cloquet C, Jayananda M (2016) A biological switch at the ocean surface as a cause of laminations in a Precambrian Iron Formation. Earth Planet Sci Lett 446:27–36

    Article  Google Scholar 

  • Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc London 167:229–248

    Article  Google Scholar 

  • Henderson B, Collins AS, Payne J, Forbes C, Saha D (2014) Geologically constraining India in Columbia: the age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India. Gondw Res 26(3):888–906

    Article  Google Scholar 

  • Heron AM (1953) Geology of Central Rajasthan, Memoir, vol 79. Geological Survey of India, Kolkata. 339 p

    Google Scholar 

  • Hess HH (1962) History of ocean basins. In: Engel AEJ, James HL, Leonard BF (eds) Petrologic studies-a volume in honor of AF Buddington. Geological Society of America, New York, NY, pp 599–620

    Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412

    Article  Google Scholar 

  • Hoffman PF (1997) Tectonic genealogy of North America. In: van der Pluijm BA, Marshak S (eds) Earth structure: an introduction to structural geology and tectonics. McGraw-Hill, New York, NY, pp 459–464

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) The Neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Holland TH (1909) The Imperial Gazetteer of India: the Indian Empire Volume 1 (Descriptive). Clarendon Press, Oxford, pp 50–103

    Google Scholar 

  • Hou GT, Santosh M, Qian XL, Lister S, Li JH (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondw Res 14:395–409

    Article  Google Scholar 

  • Ishwar-Kumar C, Windley BF, Horie K, Kato T, Hokada T, Itaya T, Yagi K (2013) A Rodinian suture in Western India: new insights on India-Madagascar correlations. Precambrian Res 236:227–251

    Article  Google Scholar 

  • James V. Jones JV, Daniel CG, Doe MF (2015) Tectonic and sedimentary linkages between the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic, ca. 1.60–1.40 Ga. Lithosphere 7:465–472

    Article  Google Scholar 

  • Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B, Mahabaleswar B (2000) Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, Southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res 99:225–254

    Article  Google Scholar 

  • Jayananda M, Kano T, Peucat JJ, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the Western Dharwar Craton, Southern India: constraints from Nd isotopes and whole rock geochemistry. Precambrian Res 162:160–179

    Article  Google Scholar 

  • Jayananda M, Peucat J-J, Chardon D, Krishna Rao B, Corfu F (2013) Neoarchean greenstone volcanism, Dharwar Craton, Southern India: constraints from SIMS zircon geochronology and Nd isotopes. Precambrian Res 227:55–76

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J, Fanning CM (2015) Paleo- to Mesoarchean TTG accretion and continental growth, Western Dharwar Craton, Southern India: SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res 268:295–322

    Article  Google Scholar 

  • Jayananda M, Duraiswami RA, Aadhiseshan KR, Gireesh RV, Prabhakar BC, Kafo K-u, Tushipokla, Namratha R (2016) Physical volcanology and geochemistry of Palaeoarchaean komatiite lava flows from the Western Dharwar Craton, Southern India: implications for Archaean mantle evolution and crustal growth. Int Geol Rev 58:1569–1595

    Article  Google Scholar 

  • Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, Southern India. Earth Sci Rev 181:12–42

    Article  Google Scholar 

  • Kaila KL, Roy Chowdhury K, Reddy PR, Krishna VG, Narain H, Subboti SI, Sollogub VB, Chekunov AV, Kharetcko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian Peninsular shield from Deep Seismic Soundings. J Geol Soc India 20:307–333

    Google Scholar 

  • Kailasam LN (1976) Geophysical studies of the major sedimentary basins of the Indian Craton, their deep structural features and evolution. In: Bott MHP (ed) Sedimentary basins of continental margins and cratons. Tectonophysics, vol 36. Elsevier, Amsterdam, pp 225–245

    Chapter  Google Scholar 

  • Karlstrom KE, Harlan SS, Williams ML, McLelland J, Geissman JW (1999) Refining Rodinia: geologic evidence for the Australia–Western U.S. connection in the Proterozoic. GSA Today 9:1–7

    Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Kinematic constraints on the Rodinia to Gondwana transition Andrew S. Merdith AS, Williams SE, Müller RD, Collins AS (2017) Precambrian Res 299:132–150

    Google Scholar 

  • de Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambrian Res 174(1):145–154

    Article  Google Scholar 

  • Korhonen FJ, Clarke C, Brown M, Bhattacharya S, Taylor R (2013) How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Res 234:322–350

    Article  Google Scholar 

  • Kumar A, Bhaskar Rao YJ, Sivaraman TV, Gopalan K (1996) Sm-Nd ages of Archaean metavolcanic of the Dharwar craton, South India. Precambrian Res 80:206–215

    Article  Google Scholar 

  • Kröner A (1981) Precambrian plate tectonics. In: Kröner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam

    Google Scholar 

  • Kroner A, Santosh M, Hegner E, Shaji E, Geng H, Xie J, Wong H, Wang Y, Shan DK, Liu D, Sun M, Nanda-Kumar V (2015) Palaeoproterozoic ancestry of Pan-African high-grade granitoids in Southernmost India: implications for Gondwana reconstructions. Gondw Res 27:1–37

    Article  Google Scholar 

  • Lancaster PJ, Dey S, Storey CD, Mitra AM, Bhunia RK (2015) Contrasting crustal evolution processes in the Dharwar craton: Insights from detrital zircon U–Pb and Hf isotopes. Gondw Res 28:1361–1372

    Article  Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1):179–210

    Article  Google Scholar 

  • Mahapatro SN, Pant NC, Bhowmik SK, Tripathy AK, Nanda JK (2012) Archaean granulite facies metamorphism at the Singhbhum Craton-Eastern Ghats Mobile Belt interface: implication for the Ur supercontinent assembly. Geol J 47:312–333

    Article  Google Scholar 

  • Malone SJ, Meert JG, Banerjee DM, Pandit MK, E. Tamrat E, Kamenov GD, Pradhan VR, Sohl LE (2008) Paleomagnetism and detrital zircon geochronology of the upper Vindhyan sequence of Son Valley, Rajasathan, India: a c. 1000 Ma closure age for the Purana basins. Precambrian Res 164:137–159

    Google Scholar 

  • Maibam B, Gerdes A, Goswami JN (2016) U-Pb and Hf isotope records in detrital and magmatic zircon from Eastern and Western Dharwar Craton, Southern India: evidence for coeval Archaean crustal evolution. Precambrian Res 275:496–512

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Santosh M, Subramanyam KSV (2017) Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment. Gondw Res 50:38–66

    Article  Google Scholar 

  • Mazumder R, Bose PK, Sarkar S (2000) A commentary on the tectono-sedimentary record of the pre-2.0 Ga continental growth of India vis-a-vis a possible pre-Gondwana Afro-Indian supercontinent. J Afr Earth Sc 30:201–217

    Article  Google Scholar 

  • Mazumder R, Eriksson PG, De S, Bumby AJ, Lenhardt N (2012) Palaeoproterozoic sedimentation on the Singhbhum Craton: global context and comparison with Kaapvaal. In: Mazumder R, Saha D (eds) Paleoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 49–74

    Google Scholar 

  • McMenamin MAS, McMenamin DLS (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York, NY, p 217

    Book  Google Scholar 

  • Meert JG (2001) Gondwana and refining Rodinia: a paleomagnetic perspective. Gondw Res 4:279–288

    Article  Google Scholar 

  • Meert JG (2002) Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent, Columbia. Gondw Res 5:207–215

    Article  Google Scholar 

  • Meert JG (2003) A synopsis of events related to the assembly of Eastern Gondwana. Tectonophysics 362:1–40

    Article  Google Scholar 

  • Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondw Res 21:987–993

    Article  Google Scholar 

  • Meert JG, Stuckey W (2002) Revisiting the paleomagnetism of the 1.476 Ga St. Francois Mountains igneous province, Missouri. Tectonics 21:1007

    Article  Google Scholar 

  • Meert JG, Lieberman BS (2004) A palaeomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. J Geol Soc London 161(3):477–487

    Article  Google Scholar 

  • Meert JG, Santosh M (2017) The Columbia supercontinent revisited. Gondw Res 50:67–83

    Article  Google Scholar 

  • Meert JG, Torsvik T (2003) The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375(1):261–288

    Article  Google Scholar 

  • Merdith AS, Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.F., Archibald, D.A., Blades, M.L., Alessio BL, Armistead S, Plavsa D, Clark C, Müller RD (2017) A full-plate global reconstruction of the Neoproterozoic. Gondw Res 50

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks J, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. J Asian Earth Sci 39:483–515

    Article  Google Scholar 

  • Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147

    Article  Google Scholar 

  • Mitra SK, Mitra SC (2001) Tectonic setting of the Precambrian of Northeast India (Meghalaya plateau) and age of the Shillong Group of rocks. In: Saxena, M. B. L. (ed.) Recent Advances in the Field of Earth Sciences and Their Implications in National Development. Geological Survey of India, Special Publications 64:653–658

    Google Scholar 

  • Misra S, Gupta S (2014) Superposed deformation and inherited structures in an ancient dilational step-over zone: post-mortem of the Rengali Province, India. J Struct Geol 59:1–17

    Article  Google Scholar 

  • Moorbath S, Taylor PN (1988) Early Precambrian crustal evolution in Eastern India: ages of the Singhbhum Granite and included remnants of older gneiss. J Geol Soc India 31:82–84

    Google Scholar 

  • Moores EM (1991) Southwest US–East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425–428

    Article  Google Scholar 

  • Mukhopadhyay D, Bhattacharyya T, Chattopadhyay N, Lopez R, Tobisch OT (2000) Anasagar gneiss: a folded granitoid in the Proterozoic South Delhi fold belt, Central Rajasthan. Proc Indian Acad Sci (Earth Planet Sci) 109:21–37

    Google Scholar 

  • Mukhopadhyay J, Beukes NJ, Armstrong RA, Zimmermann U, Ghosh G, Medda RA (2008) Dating the oldest Greenstone in India: a 3.51 Ga precise U–Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton. J Geol 116:449–461

    Article  Google Scholar 

  • Naganjaneyulu K, Santosh M (2010) The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondw Res:547–564

    Article  Google Scholar 

  • Naha K, Srinivasan R, Jayaram S (1991) Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, Southern India. Proc Indian Acad Sci (Earth Planet Sci) 100:413

    Google Scholar 

  • Nance RD, Murphy JB (2013) Origins of the supercontinent cycle. Geosci Front 4(4):439–448

    Article  Google Scholar 

  • Nance R, Murphy J, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondw Res 25:4–29

    Article  Google Scholar 

  • Nutman AP, Chadwick B, Ramakrishnan M, Viswanatha MN (1992) SHRIMP U–Pb ages of detrital zircon in Sargur supracrustal rocks in Western Karnataka. South India J Geol Soc India 39:367–374

    Google Scholar 

  • Nutman AP, Chadwick B, Krishna Rao B, Vasudev VN (1996) SHRIMP U–Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups and granites adjacent to Sandur schist belt. J Geol Soc India 47:153–161

    Google Scholar 

  • Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103

    Article  Google Scholar 

  • Patranabis-Deb S, Majumder T, Khan S (2018) Lifestyles of the Palaeoproterozoic stromatolite builders in the Vempalle Sea, Cuddapah Basin, India. J Asian Earth Sci 157:360–370

    Article  Google Scholar 

  • Pehrsson SJ, Eglington BM, Evans DAD, Huston D, Reddy SM (2016) Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li ZX, Evans DAD, Murphy JB (eds) Supercontinent cycles through earth history. Geological Society, London, Special Publications, vol 424. Geological Society of London, London, pp 83–94

    Google Scholar 

  • Peucat JJ, Bouhallier H, Fanning CM, Jayananda M (1995) Age of Holenarsipur schist belt, relationships with the surrounding gneisses (Karnataka, south India). J Geol 103:701–710

    Google Scholar 

  • Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning Marc C, Paquette JL (2013) The lower crust of Dharwar craton, south India: patchwork of Archean granulitic domains. Precambrian Res 227:4–29

    Google Scholar 

  • Pisarevsky SA, Gladkochub DP, Konstantinov KM, Mazukabzov AM, Stanevich AM, Murphy JB, Tait JA, Donskaya TV, Konstantinov IK (2013) Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: implications for Neoproterozoic paleogeography. Precambrian Res 231:372–382

    Article  Google Scholar 

  • Powell CM, Li ZX, McElhinny MW, Meert JG, Park JK (1993) Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology 21(10):889–892

    Article  Google Scholar 

  • Powell CM, Dalziel IWD, Li ZX, McElhinny MW (1995) Did Pannotia, the latest Neoproterozoic Southern supercontinent, really exist? Eos (Transactions, American Geophysical Union). Fall Meet 76:172

    Google Scholar 

  • Qureshy MN, Hinze WJ (1989) Regional geophysical lineaments: their tectonic and economic significance. J Geol Soc India 34:124

    Google Scholar 

  • Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166

    Article  Google Scholar 

  • Radhakrishna BP, Vaidyanadhan R (1997) Geology of Karnataka, 2nd edn. Geological Society of India, Bangalore. 553 p

    Google Scholar 

  • Ramakrishna M, Vaidyanadhan R (2008) Geology of India, vol I. Geological Society of India, Bangalore, p 556

    Google Scholar 

  • Ray JS (2006) Age of the Vindhyan Supergroup: a review of recent findings. J Earth Syst Sci 115:149–160

    Article  Google Scholar 

  • Ray JS, Martin MW, Veizer J, Bowring SA (2002) U-Pb zircon dating and Sr isotope systematic of the Vindhyan Supergroup, India. Geology 30:131–134

    Article  Google Scholar 

  • Reddy S, Clarke C, Mazumder R (2009) Temporal constraints on the evolution of the Singbhum Crustal Province from U–Pb SHRIMP data. In: Saha D, Mazumder R (eds) Abstract volume. International Conference on Paleoproterozoic Supercontinents and Global Evolution. IAGR Confernce Series, vol 9. IAGR, Beijing, pp 17–18

    Google Scholar 

  • Rogers JJW (1993) India and Ur. J Geol Soc India 42:217–222

    Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondw Res 5:5–22

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, Oxford. 289 p

    Google Scholar 

  • Roy AB, Jakhar SR (2002) Geology of Rajasthan (Northwestern India), Precambrian to recent. Scientific Publisher, Jodhpur, p 421

    Google Scholar 

  • Roy A, Ramachandra HM, Bandopadhyay BK (2000) Supracrustal belts and their significance in the crustal evolution of Central India. Geol Surv India Spec Publ 55:361–380

    Google Scholar 

  • Roy A, Devaranjan MK, Hanuma Prasad M (2002) Ductile shearing and syntectonic granite emplacement along the Southern margin of the Palaeoproterozoic Mahakoshal supracrustal belt of Central India. Gondw Res 5:489–500

    Article  Google Scholar 

  • Runcorn SK (1962) Convection currents in the Earth’s mantle. Nature 195:1248–1249

    Article  Google Scholar 

  • Saha AK (1994) Crustal Evolution of Singhbhum–North Orissa, Eastern India. Geological Society of India, Memoir, vol 27. Geological Society of India, Bangalore

    Google Scholar 

  • Saha D (2002) Multi-stage deformation in the Nallamalai fold belt, Cuddapah basin, South India – implications for Mesoproterozoic tectonism along Southeastern margin of India. Gondw Res 5:701–719

    Article  Google Scholar 

  • Saha D (2011) Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, South India. J Asian Earth Sci 42:158–175

    Article  Google Scholar 

  • Saha D, Chakraborty S (2003) Deformation pattern in the Kurnool and Nallamalai groups in the Northeastern part (Palnad area) of the Cuddapah basin, South India and its implication on Rodinia. Gondw Res 6:73–83

    Article  Google Scholar 

  • Saha D, Mazumder R (2012) An overview of the Paleoproterozoic geology of peninsular India, and key stratigraphic and tectonic issues. In: Mazumder R, Saha D (eds) Paleoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 5–29

    Google Scholar 

  • Saha D, Deb GK, Dutta S (2000) Granite greenstone relationship in the Sonakhan Belt, Raipur District, Central India. Geol Surv India Spec Publ 57:67–78

    Google Scholar 

  • Saha D, Chakraborti S, Tripathy V (2010) Intracontinental thrusts and inclined transpression along Eastern margin of the East Dharwar Craton, India. J Geol Soc India 75:323–337

    Article  Google Scholar 

  • Saha D, Bhowmik S, Bose S, Sajeev K (2016a) Proterozoic tectonics and trans-Indian mobile belts: a status report. Proc Indian Natl Sci Acad 82:445–460

    Google Scholar 

  • Saha D, Patranabis-Deb S, Collins AS (2016b) Proterozoic stratigraphy of Southern Indian Cratons and global context. In: Montenari M (ed) Stratigraphy & timescales, vol 1. Elsevier, Amsterdam, pp 1–59

    Google Scholar 

  • Santosh M, Sajeev K, Li JH (2006) Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from North China Craton. Gondw Res 10:256–266

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in Southern India? Gondw Res 16:321–341

    Article  Google Scholar 

  • Santosh M, Yang QY, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M (2015) An exotic Mesoarchean microcontinent: the Coorg Block, Southern India. Gondw Res 27:165–195

    Article  Google Scholar 

  • Santosh M, Yang QY, Shaji E, Ram Mohan M, Tsunogae T, Satyanarayanan M (2016) Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gondw Res 29:105–135

    Article  Google Scholar 

  • Santosh M, Arai T, Maruyama S (2017a) Hadean Earth and primordial continents: the cradle of prebiotic life. Geosci Front 8:309–327

    Article  Google Scholar 

  • Santosh M, Hu CN, He XF, Li SS, Tsunogae T, Shaji E, Indu G (2017b) Neoproterozoic arc magmatism in the Southern Madurai block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondw Res 45:1–42

    Article  Google Scholar 

  • Sarangi S, Gopalan K, Kumar S (2004) Pb–Pb age of earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res 132:107–121

    Article  Google Scholar 

  • Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. petrology and pressure temperature evolution. Precambrian Res 255:485–509

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK (1993) Early Archaean crust in Bastar Craton, Central India: a geochemical and isotopic study. Precambrian Res 62:127–132

    Article  Google Scholar 

  • Sarkar T, Schenk V, Appel P, Berndt J, Sengupta P (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 2. LA-ICP-MS zircon dating and texturally controlled in situ monazite dating. Precambrian Res 255:467–484

    Article  Google Scholar 

  • Sarkar T, Schenk V, Berndt J (2015) Formation and evolution of a Proterozoic magmatic arc: geochemical and geochronological constraints from meta-igneous rocks of the Ongole domain, Eastern Ghats Belt, India. Contrib Mineral Petrol 169:1–27

    Article  Google Scholar 

  • Sears JW, Price RA (2000) New look at the Siberian connection: No SWEAT. Geology 28:423–426

    Article  Google Scholar 

  • Sears JW, Price RA (2003) Tightening the Siberian connection to western Laurentia. Geol Soc Am Bull 115:943–953

    Article  Google Scholar 

  • Sharma R (2009) Aravalli mountain belt. In: Cratons and fold belts of India. Lecture notes in Earth sciences, vol 127. Springer Nature, Cham, pp 143–176

    Chapter  Google Scholar 

  • Sharma M, Basu AR, Ray SL (1994) Sm–Nd isotopic and geochemical study of the Archaean tonalite amphibolite association from the Eastern Indian Craton. Contrib Mineral Petrol 117:45–55

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  • Sinha-Roy S, Malhotra G, Guha DB (1995) A transect across Rajasthan Precambrian terrain in relation to geology, tectonics and crustal evolution in South-Central Rajasthan. Geol Soc India Mem 31:63–89

    Google Scholar 

  • Sleep HN (1992) Time dependence of mantle plumes: some simple theory. J Geophys Res Solid Earth 97(B13):20007–20019

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2005) The Mesoarchean emergence of subduction. Gondw Res 11:50–68

    Article  Google Scholar 

  • Srivastava R (2013) Petrological and geochemical characteristics of Paleoproterozoic ultramafic lamprophyres and carbonatites from the Chitrangi region, Mahakoshal Supracrustal Belt, Central India. J Earth Syst Sci 122:759–776

    Article  Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33:557–560

    Article  Google Scholar 

  • Stern RJ (2007) When did plate tectonics begin? Theoretical and empirical considerations. Chin Bull Sci 52:578–591

    Article  Google Scholar 

  • Stern RJ, Avigad D, Miller N, Beyth M (2008) From volcanic winter to snowball earth: an alternative explanation for Neoproterozoic biosphere stress. Links between geological processes, microbial activities & evolution of life. Springer, Dordrecht, pp 313–337

    Google Scholar 

  • Stern RJ, Leybourne MI, Tsujimori T (2016) Kimberlites and the start of plate tectonics. Geology 44:799–802

    Article  Google Scholar 

  • Strik G. Blake TS, Zegers TE, White SH, Langereis CG (2003) Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field. J Geophys Res, Solid Earth 108 (B12) 2551

    Google Scholar 

  • Tackley PJ (2000) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Geochem Geophys Geosyst 1(8):2000GC000043

    Google Scholar 

  • Taylor SR, Rudnick RL, McLennan SM, Eriksson KA (1986) Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochim Cosmochim Acta 50:2267–2279

    Article  Google Scholar 

  • Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40(3):229–258

    Article  Google Scholar 

  • Tucker RD, Ashwal LD, Torsvik TH (2001) U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth Planet Sci Lett 187(1):27–38

    Article  Google Scholar 

  • Turner S, Rushmer T, Reagan M, Moyen JF (2014) Heading down early on? Start of subduction on Earth. Geology 42(2):139–142

    Article  Google Scholar 

  • Valentine JW, Moores EM (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657–659

    Article  Google Scholar 

  • Valentine JW, Moores EM (1972) Global tectonics and the fossil record. J Geol 80:167–184

    Article  Google Scholar 

  • Wegener A (1912) Die entstehung der kontinente. Geologische Rundschau 3(4):276–292

    Article  Google Scholar 

  • Wegener A (1922) Die Entstehung der Kontinente und Ozeane [On the Origin of Continents and Oceans]. English translation of 3rd edition by JGA Skerl (1924). Methuen, London, p 212

    Google Scholar 

  • Weil AB, Van der Voo R, MacNiocall C, Meert JG (1998) The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth Planet Sci Lett 154:13–24

    Article  Google Scholar 

  • Williams H, Hoffman PF, Lewry JF, Monger JWH, Rivers T (1991) Anatomy of North America. Tectonophysics 187:117–134

    Article  Google Scholar 

  • Wingate MT, Giddings JW (2000) Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma. Precambrian Res 100:335–357

    Article  Google Scholar 

  • Wingate MT, Pisarevsky SA, Evans DA (2002) Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova 14:121–128

    Google Scholar 

  • Yan Q, Hanson AD, Wang Z, Druschke PA, Yan Z, Wang T, Liu D, Song B, Jian P, Zhou H, Jiang C (2004) Neoproterozoic subduction and rifting on the Northern margin of the Yangtze Plate, China: implications for Rodinia reconstruction. Int Geol Rev 46(9):817–832

    Article  Google Scholar 

  • Yang QY, Ganguly S, Santosh M, Shaji E, Dong Y, Nanda-Kumar V (2017) Extensional collapse of the Gondwana orogen: evidence from Cambrian mafic magmatism in the Trivandrum Block, Southern India. Geosci Front 10:263

    Article  Google Scholar 

  • Yedekar DB, Jain SC, Nair KKK, Dutta KK (1990) The Central Indian collision suture. Precambrian of Central India. Geol Surv India Spec Publ 28:1–37

    Google Scholar 

  • Yellappa T, Chetty TRK, Tsunogae T, Santosh M (2010) The Manamedu complex: geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within the Gondwana suture in Southern India. J Geodyn 50:268–285

    Article  Google Scholar 

  • Yin A, Dubey CS, Webb AAG, Kelty TK, Grove M, Gehrels GE, Burgess WP (2010) Geologic correlation of the Himalayan orogen and Indian Craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geol Soc Am Bull 122:336–359

    Article  Google Scholar 

  • Yoshida M, Jacobs J, Santosh M, Rajesh HM (2003) Role of Pan-African events in the Circum-East Antarctic orogen of East Gondwana: a critical overview. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, vol 206. Geological Society of London, London, pp 57–75

    Google Scholar 

  • Zegers TE, Ocampo A (2003) Vaalbara and tectonic effects of a mega impact in the early archean 3470 Ma. Third International Conference on Large Meteorite Impacts, Nordlingen, Germany. Lunar and Planetary Institute, Houston, TX

    Google Scholar 

  • Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67(1):91–123

    Article  Google Scholar 

  • Zhou MF, Kennedy AK, Sun M, Malpas J, Lesher CM (2002) Neoproterozoic Arc‐Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. The Journal of Geology 110 (5):611–618

    Article  Google Scholar 

Download references

Acknowledgments

The present work emanates from the ongoing research program of the Indian Statistical Institute on Proterozoic Geology. Sincere thanks to Prof. S. K. Tandon and Prof. Neal S. Gupta for inviting us to write the paper for this special volume. We are grateful for the constructive review by Prof. M. Jayananda, which helped us improve this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patranabis-Deb, S., Saha, D., Santosh, M. (2020). Tracking India Within Precambrian Supercontinent Cycles. In: Gupta, N., Tandon, S. (eds) Geodynamics of the Indian Plate. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_3

Download citation

Publish with us

Policies and ethics