Skip to main content

Mass Spectrometry Based Comparative Proteomics Using One Dimensional and Two Dimensional SDS-PAGE of Rat Atria Induced with Obstructive Sleep Apnea

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Proteomics involves large-scale comprehensive study of specific proteomes which have been widely used in the field of biomarker discovery, drug development, disease diagnosis and therapy. Comprehensive proteomics involve two or more proteomics approaches that are confirmatory, complementary, and/or synergistic. Obstructive sleep apnea (OSA) is a sleep disorder which causes respiratory cessation (due to upper airway collapse). Here we describe a comprehensive MS based label-free quantitative proteomic analysis of the OSA induced rat atria homogenates and matched controls by using 1 dimensional SDS PAGE (1-D PAGE) and 2 dimensional SDS PAGE (2-D PAGE) separation of the proteins, enzymatic digestion and analysis by nanoliquid chromatography tandem-mass spectrometry (LC-MS/MS). The outcomes from the 1D-PAGE and 2D-PAGE studies not only identified dysregulated proteins due to OSA, but also confirmed and complemented each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D PAGE:

1 dimensional SDS PAGE

2-D PAGE:

2 dimensional SDS PAGE

ACN:

Acetonitrile

AHI:

Apnea-hypopnea index

BCA:

Bicinchoninic acid

DTT:

Dithiothreitol

ECG:

Electrocardiogram

HSP:

Heat shock protein

IAA:

Iodoacetamide

IEF:

Isoelectric focusing

LC-MS/MS:

Liquid chromatography mass spectrometry

MS:

Mass spectrometry

OSA:

Obstructive sleep apnea

pI:

Isoelectric points

PLGS:

ProteinLynx Global Server

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Punjabi, N. M. (2008). The epidemiology of adult obstructive sleep apnea. Proceedings of the American Thoracic Society, 5(2), 136–143.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Channaveerappa, D., Lux, J. C., Wormwood, K. L., Heintz, T. A., McLerie, M., Treat, J. A., et al. (2017). Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. Journal of Cellular and Molecular Medicine, 21(9), 2223–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crossland, R. F., Durgan, D. J., Lloyd, E. E., Phillips, S. C., Reddy, A. K., Marrelli, S. P., et al. (2013). A new rodent model for obstructive sleep apnea: Effects on ATP-mediated dilations in cerebral arteries. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305(4), R334–R342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lux, J. C., Channaveerappa, D., Aslebagh, R., McLerie, M., Panama, B. K., & Darie, C. C. (2019). Identification of dysregulation of atrial proteins in rats with chronic obstructive apnea using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Journal of Cellular and Molecular Medicine, 23(4), 3016–3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Young, T., Peppard, P. E., & Gottlieb, D. J. (2002). Epidemiology of obstructive sleep apnea: A population health perspective. American Journal of Respiratory and Critical Care Medicine, 165(9), 1217–1239.

    Article  PubMed  Google Scholar 

  6. Ho, M. L., & Brass, S. D. (2011). Obstructive sleep apnea. Neurology International, 3(3), e15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piccirillo, J. F., Duntley, S., & Schotland, H. (2000). Obstructive sleep apnea. JAMA, 284(12), 1492–1494.

    Article  CAS  PubMed  Google Scholar 

  8. Somers, V., & American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology. American Heart Association Stroke Council. American Heart Association Council on Cardiovascular Nursing. American College of Cardiology Foundation. (2008). Sleep apnea and cardiovascular disease: An American Heart Association/American College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation, 118, 1080–1111.

    Article  PubMed  Google Scholar 

  9. Sin, D. D., Fitzgerald, F., Parker, J. D., Newton, G., Floras, J. S., & Bradley, T. D. (1999). Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. American Journal of Respiratory and Critical Care Medicine, 160(4), 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  10. Young, T., Finn, L., Peppard, P. E., Szklo-Coxe, M., Austin, D., Nieto, F. J., et al. (2008). Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep, 31(8), 1071–1078.

    PubMed  PubMed Central  Google Scholar 

  11. Qureshi, A., Ballard, R. D., & Nelson, H. S. (2003). Obstructive sleep apnea. Journal of Allergy and Clinical Immunology, 112(4), 643–651.

    Article  Google Scholar 

  12. Ramos, P., Rubies, C., Torres, M., Batlle, M., Farre, R., Brugada, J., et al. (2014). Atrial fibrosis in a chronic murine model of obstructive sleep apnea: Mechanisms and prevention by mesenchymal stem cells. Respiratory Research, 15(1), 54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hohl, M., Linz, B., Bohm, M., & Linz, D. (2014). Obstructive sleep apnea and atrial arrhythmogenesis. Current Cardiology Reviews, 10(4), 362–368.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iwasaki, Y.-k., Kato, T., Xiong, F., Shi, Y.-F., Naud, P., Maguy, A., et al. (2014). Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. Journal of the American College of Cardiology, 64(19), 2013–2023.

    Article  PubMed  Google Scholar 

  15. Ghias, M., Scherlag, B. J., Lu, Z., Niu, G., Moers, A., Jackman, W. M., et al. (2009). The role of ganglionated plexi in apnea-related atrial fibrillation. Journal of the American College of Cardiology, 54(22), 2075–2083.

    Article  PubMed  Google Scholar 

  16. Linz, D., Schotten, U., Neuberger, H.-R., Böhm, M., & Wirth, K. (2011). Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm, 8(9), 1436–1443.

    Article  PubMed  Google Scholar 

  17. Carreras, A., Rojas, M., Tsapikouni, T., Montserrat, J. M., Navajas, D., & Farré, R. (2010). Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing. Respiratory Research, 11(1), 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Carreras, A., Almendros, I., Montserrat, J. M., Navajas, D., & Farré, R. (2010). Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respiratory Physiology & Neurobiology, 172(3), 210–212.

    Article  CAS  Google Scholar 

  19. Antzelevitch, C., & Burashnikov, A. (2011). Overview of basic mechanisms of cardiac arrhythmia. Cardiac Electrophysiology Clinics, 3(1), 23–45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujita, M., Mitsuhashi, H., Isogai, S., Nakata, T., Kawakami, A., Nonaka, I., et al. (2012). Filamin C plays an essential role in the maintenance of the structural integrity of cardiac and skeletal muscles, revealed by the medaka mutant zacro. Developmental Biology, 361(1), 79–89.

    Article  CAS  PubMed  Google Scholar 

  21. Flix, B., de la Torre, C., Castillo, J., Casal, C., Illa, I., & Gallardo, E. (2013). Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. The International Journal of Biochemistry & Cell Biology, 45(8), 1927–1938.

    Article  CAS  Google Scholar 

  22. Capanni, C., Del Coco, R., Squarzoni, S., Columbaro, M., Mattioli, E., Camozzi, D., et al. (2008). Prelamin a is involved in early steps of muscle differentiation. Experimental Cell Research, 314(20), 3628–3637.

    Article  CAS  PubMed  Google Scholar 

  23. Araujo-Vilar, D., Lado-Abeal, J., Palos-Paz, F., Lattanzi, G., Bandin, M. A., Bellido, D., et al. (2008). A novel phenotypic expression associated with a new mutation in LMNA gene, characterized by partial lipodystrophy, insulin resistance, aortic stenosis and hypertrophic cardiomyopathy. Clinical Endocrinology, 69(1), 61–68.

    Article  CAS  PubMed  Google Scholar 

  24. Knoll, R., Hoshijima, M., Hoffman, H. M., Person, V., Lorenzen-Schmidt, I., Bang, M. L., et al. (2002). The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell, 111(7), 943–955.

    Article  CAS  PubMed  Google Scholar 

  25. Buyandelger, B., Ng, K. E., Miocic, S., Piotrowska, I., Gunkel, S., Ku, C. H., et al. (2011). MLP (muscle LIM protein) as a stress sensor in the heart. Pflügers Archiv, 462(1), 135–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. The Journal of Clinical Investigation, 115(3), 500–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Opie, L. H. (2004). Heart physiology: From cell to circulation (4th ed.). Philadelphia: Lippincott Williams & Wilkens.

    Google Scholar 

  28. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: Implications beyond ATP production. Circulation Research, 113(6), 709–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. The Biochemical Journal, 281(Pt 1), 21–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brewster, L. M., Mairuhu, G., Bindraban, N. R., Koopmans, R. P., Clark, J. F., & van Montfrans, G. A. (2006). Creatine kinase activity is associated with blood pressure. Circulation, 114(19), 2034–2039.

    Article  CAS  PubMed  Google Scholar 

  31. Luo, Y., Pan, Y. Z., Zeng, C., Li, G. L., Lei, X. M., Liu, Z., et al. (2011). Altered serum creatine kinase level and cardiac function in ischemia-reperfusion injury during percutaneous coronary intervention. Medical Science Monitor, 17(9), CR474–CR479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lentini, S., Manka, R., Scholtyssek, S., Stoffel-Wagner, B., Luderitz, B., & Tasci, S. (2006). Creatine phosphokinase elevation in obstructive sleep apnea syndrome: An unknown association? Chest, 129(1), 88–94.

    Article  CAS  PubMed  Google Scholar 

  33. Cha, Y. M., Dzeja, P. P., Shen, W. K., Jahangir, A., Hart, C. Y., Terzic, A., et al. (2003). Failing atrial myocardium: Energetic deficits accompany structural remodeling and electrical instability. American Journal of Physiology. Heart and Circulatory Physiology, 284(4), H1313–H1320.

    Article  CAS  PubMed  Google Scholar 

  34. Smith, C. S., Bottomley, P. A., Schulman, S. P., Gerstenblith, G., & Weiss, R. G. (2006). Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation, 114(11), 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petrash, J. M. (2004). All in the family: Aldose reductase and closely related aldo-keto reductases. Cellular and Molecular Life Sciences, 61(7–8), 737–749.

    Article  CAS  PubMed  Google Scholar 

  36. Tang, W. H., Kravtsov, G. M., Sauert, M., Tong, X. Y., Hou, X. Y., Wong, T. M., et al. (2010). Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. Journal of Molecular and Cellular Cardiology, 49(1), 58–69.

    Article  CAS  PubMed  Google Scholar 

  37. Ananthakrishnan, R., Li, Q., Gomes, T., Schmidt, A. M., & Ramasamy, R. (2011). Aldose reductase pathway contributes to vulnerability of aging myocardium to ischemic injury. Experimental Gerontology, 46(9), 762–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Son, N. H., Ananthakrishnan, R., Yu, S., Khan, R. S., Jiang, H., Ji, R., et al. (2012). Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia. PLoS One, 7(9), e46549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fillmore, N., Mori, J., & Lopaschuk, G. D. (2014). Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. British Journal of Pharmacology, 171(8), 2080–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frey, N., & Olson, E. N. (2002). Modulating cardiac hypertrophy by manipulating myocardial lipid metabolism? Circulation, 105(10), 1152–1154.

    Article  PubMed  Google Scholar 

  41. Hopps, E., & Caimi, G. (2015). Obstructive sleep apnea syndrome: Links between pathophysiology and cardiovascular complications. Clinical and Investigative Medicine, 38(6), E362–E370.

    Article  CAS  PubMed  Google Scholar 

  42. Somers, V. K., White, D. P., Amin, R., Abraham, W. T., Costa, F., Culebras, A., et al. (2008). Sleep apnea and cardiovascular disease: An American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing in Collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation, 118(10), 1080–1111.

    Article  PubMed  Google Scholar 

  43. Taegtmeyer, H., & Overturf, M. L. (1988). Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension, 11(5), 416–426.

    Article  CAS  PubMed  Google Scholar 

  44. Kohno, H., Takahashi, N., Shinohara, T., Ooie, T., Yufu, K., Nakagawa, M., et al. (2007). Receptor-mediated suppression of cardiac heat-shock protein 72 expression by testosterone in male rat heart. Endocrinology, 148(7), 3148–3155.

    Article  CAS  PubMed  Google Scholar 

  45. Latchman, D. S. (2001). Heat shock proteins and cardiac protection. Cardiovascular Research, 51(4), 637–646.

    Article  CAS  PubMed  Google Scholar 

  46. Torigoe, Y., Takahashi, N., Hara, M., Yoshimatsu, H., & Saikawa, T. (2009). Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology, 150(3), 1450–1455.

    Article  CAS  PubMed  Google Scholar 

  47. Cao, H., Xue, L., Xu, X., Wu, Y., Zhu, J., Chen, L., et al. (2011). Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery. Cell Stress & Chaperones, 16(5), 517–528.

    Article  CAS  Google Scholar 

  48. Wakisaka, O., Takahashi, N., Shinohara, T., Ooie, T., Nakagawa, M., Yonemochi, H., et al. (2007). Hyperthermia treatment prevents angiotensin II-mediated atrial fibrosis and fibrillation via induction of heat-shock protein 72. Journal of Molecular and Cellular Cardiology, 43(5), 616–626.

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi, M., Fujimoto, K., Urushibata, K., Takamizawa, A., Kinoshita, O., & Kubo, K. (2006). Hypoxia-sensitive molecules may modulate the development of atherosclerosis in sleep apnoea syndrome. Respirology, 11(1), 24–31.

    Article  PubMed  Google Scholar 

  50. Noguchi, T., Chin, K., Ohi, M., Kita, H., Otsuka, N., Tsuboi, T., et al. (1997). Heat shock protein 72 level decreases during sleep in patients with obstructive sleep apnea syndrome. American Journal of Respiratory and Critical Care Medicine, 155(4), 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  51. Flink, I. L., Rader, J. H., Banerjee, S. K., & Morkin, E. (1978). Atrial and ventricular cardiac myosins contain different heavy chain species. FEBS Letters, 94(1), 125–130.

    Article  CAS  PubMed  Google Scholar 

  52. Reiser, P. J., & Moravec, C. S. (2014). Sex differences in myosin heavy chain isoforms of human failing and nonfailing atria. American Journal of Physiology. Heart and Circulatory Physiology, 307(3), H265–H272.

    Article  CAS  PubMed  Google Scholar 

  53. Hydock, D. S., Wonders, K. Y., Schneider, C. M., & Hayward, R. (2009). Voluntary wheel running in rats receiving doxorubicin: Effects on running activity and cardiac myosin heavy chain. Anticancer Research, 29(11), 4401–4407.

    CAS  PubMed  Google Scholar 

  54. Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86(4), 386–390.

    Article  CAS  PubMed  Google Scholar 

  55. Nakao, K., Minobe, W., Roden, R., Bristow, M. R., & Leinwand, L. A. (1997). Myosin heavy chain gene expression in human heart failure. The Journal of Clinical Investigation, 100(9), 2362–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O., et al. (2012). NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metabolism, 16(3), 378–386.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshikawa, S., & Shimada, A. (2015). Reaction mechanism of cytochrome c oxidase. Chemical Reviews, 115(4), 1936–1989.

    Article  CAS  PubMed  Google Scholar 

  58. Sharov, V. G., Todor, A. V., Imai, M., & Sabbah, H. N. (2005). Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Failure Reviews, 10(4), 305–310.

    Article  CAS  PubMed  Google Scholar 

  59. Wu, C., Yan, L., Depre, C., Dhar, S. K., Shen, Y. T., Sadoshima, J., et al. (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. American Journal of Physiology. Cell Physiology, 297(4), C928–C934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kadenbach, B., Ramzan, R., & Vogt, S. (2009). Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends in Molecular Medicine, 15(4), 139–147.

    Article  CAS  PubMed  Google Scholar 

  61. Cox, A. G., Peskin, A. V., Paton, L. N., Winterbourn, C. C., & Hampton, M. B. (2009). Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry, 48(27), 6495–6501.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar, V., Kitaeff, N., Hampton, M. B., Cannell, M. B., & Winterbourn, C. C. (2009). Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion. FEBS Letters, 583(6), 997–1000.

    Article  CAS  PubMed  Google Scholar 

  63. Park, A. M., & Suzuki, Y. J. (2007). Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. Journal of Applied Physiology (Bethesda, MD: 1985), 102(5), 1806–1814.

    Article  CAS  Google Scholar 

  64. Guo, Q., Wang, Y., Li, Q. Y., Li, M., & Wan, H. Y. (2013). Levels of thioredoxin are related to the severity of obstructive sleep apnea: Based on oxidative stress concept. Sleep & Breathing, 17(1), 311–316.

    Article  Google Scholar 

  65. Zhao, W., Fan, G. C., Zhang, Z. G., Bandyopadhyay, A., Zhou, X., & Kranias, E. G. (2009). Protection of peroxiredoxin II on oxidative stress-induced cardiomyocyte death and apoptosis. Basic Research in Cardiology, 104(4), 377–389.

    Article  CAS  PubMed  Google Scholar 

  66. Park, J. G., Yoo, J. Y., Jeong, S. J., Choi, J. H., Lee, M. R., Lee, M. N., et al. (2011). Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circulation Research, 109(7), 739–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brandolin, G., Dupont, Y., & Vignais, P. V. (1985). Substrate-induced modifications of the intrinsic fluorescence of the isolated adenine nucleotide carrier protein: Demonstration of distinct conformational states. Biochemistry, 24(8), 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  68. Dorner, A., Giessen, S., Gaub, R., Grosse Siestrup, H., Schwimmbeck, P. L., Hetzer, R., et al. (2006). An isoform shift in the cardiac adenine nucleotide translocase expression alters the kinetic properties of the carrier in dilated cardiomyopathy. European Journal of Heart Failure, 8(1), 81–89.

    Article  PubMed  CAS  Google Scholar 

  69. Dorner, A., & Schultheiss, H. P. (2007). Adenine nucleotide translocase in the focus of cardiovascular diseases. Trends in Cardiovascular Medicine, 17(8), 284–290.

    Article  PubMed  CAS  Google Scholar 

  70. Heger, J., Abdallah, Y., Shahzad, T., Klumpe, I., Piper, H. M., Schultheiss, H. P., et al. (2012). Transgenic overexpression of the adenine nucleotide translocase 1 protects cardiomyocytes against TGFbeta1-induced apoptosis by stabilization of the mitochondrial permeability transition pore. Journal of Molecular and Cellular Cardiology, 53(1), 73–81.

    Article  CAS  PubMed  Google Scholar 

  71. Giron-Calle, J., Zwizinski, C. W., & Schmid, H. H. (1994). Peroxidative damage to cardiac mitochondria. II. Immunological analysis of modified adenine nucleotide translocase. Archives of Biochemistry and Biophysics, 315(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  72. Wiegand, G., & Remington, S. J. (1986). Citrate synthase: Structure, control, and mechanism. Annual Review of Biophysics and Biophysical Chemistry, 15, 97–117.

    Article  CAS  PubMed  Google Scholar 

  73. Lei, B., Lionetti, V., Young, M. E., Chandler, M. P., d’Agostino, C., Kang, E., et al. (2004). Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. Journal of Molecular and Cellular Cardiology, 36(4), 567–576.

    Article  CAS  PubMed  Google Scholar 

  74. Garnier, A., Fortin, D., Delomenie, C., Momken, I., Veksler, V., & Ventura-Clapier, R. (2003). Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology, 551(Pt 2), 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Emelyanova, L., Ashary, Z., Cosic, M., Negmadjanov, U., Ross, G., Rizvi, F., et al. (2016). Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 311(1), H54–H63.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Montaigne, D., Marechal, X., Lefebvre, P., Modine, T., Fayad, G., Dehondt, H., et al. (2013). Mitochondrial dysfunction as an arrhythmogenic substrate: A translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops. Journal of the American College of Cardiology, 62(16), 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  77. Popp, R. L. (2013). Troponin: Messenger or actor? Journal of the American College of Cardiology, 61(6), 611–614.

    Article  CAS  PubMed  Google Scholar 

  78. Katus, H. A. (2008). Development of the cardiac troponin T immunoassay. Clinical Chemistry, 54(9), 1576–1577; discussion 1577.

    Article  CAS  PubMed  Google Scholar 

  79. Conti, A., Mariannini, Y., Canuti, E., Cerini, G., De Bernardis, N., Gigli, C., et al. (2015). Role of masked coronary heart disease in patients with recent-onset atrial fibrillation and troponin elevations. European Journal of Emergency Medicine, 22(3), 162–169.

    Article  PubMed  Google Scholar 

  80. Conti, A., Angeli, E., Scorpiniti, M., Alesi, A., Trausi, F., Lazzeretti, D., et al. (2015). Coronary atherosclerosis and adverse outcomes in patients with recent-onset atrial fibrillation and troponin rise. The American Journal of Emergency Medicine, 33(10), 1407–1413.

    Article  PubMed  Google Scholar 

  81. Parwani, A. S., & Boldt, L. H. (2014). Atrial fibrillation-induced cardiac troponin I release. International Journal of Cardiology, 172(1), 220.

    Article  PubMed  Google Scholar 

  82. Einvik, G., Rosjo, H., Randby, A., Namtvedt, S. K., Hrubos-Strom, H., Brynildsen, J., et al. (2014). Severity of obstructive sleep apnea is associated with cardiac troponin I concentrations in a community-based sample: Data from the Akershus Sleep Apnea Project. Sleep, 37(6), 1111–1116, 1116A–1116B.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Connelly, A., Findlay, I. N., & Coats, C. J. (2016). Measurement of troponin in cardiomyopathies. Cardiogenetics, 6(1).

    Google Scholar 

  84. Barcelo, A., Esquinas, C., Bauca, J. M., Pierola, J., de la Pena, M., Arque, M., et al. (2014). Effect of CPAP treatment on plasma high sensitivity troponin levels in patients with obstructive sleep apnea. Respiratory Medicine, 108(7), 1060–1063.

    Article  PubMed  Google Scholar 

  85. Pietkiewicz, S., Schmidt, J. H., & Lavrik, I. N. (2015). Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. Journal of Immunological Methods, 423, 99–103.

    Article  CAS  PubMed  Google Scholar 

  86. Benevolensky, D., Belikova, Y., Mohammadzadeh, R., Trouve, P., Marotte, F., Russo-Marie, F., et al. (2000). Expression and localization of the annexins II, V, and VI in myocardium from patients with end-stage heart failure. Laboratory Investigation, 80(2), 123–133.

    Article  CAS  PubMed  Google Scholar 

  87. Wakabayashi, H., Taki, J., Inaki, A., Shiba, K., Matsunari, I., & Kinuya, S. (2015). Correlation between apoptosis and left ventricular remodeling in subacute phase of myocardial ischemia and reperfusion. EJNMMI Research, 5(1), 72.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., & Werner, N. (2011). Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. European Heart Journal, 32(16), 2034–2041.

    Article  CAS  PubMed  Google Scholar 

  89. Yun, C. H., Jung, K. H., Chu, K., Kim, S. H., Ji, K. H., Park, H. K., et al. (2010). Increased circulating endothelial microparticles and carotid atherosclerosis in obstructive sleep apnea. Journal of Clinical Neurology, 6(2), 89–98.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jia, L., Fan, J., Cui, W., Liu, S., Li, N., Lau, W. B., et al. (2017). Endothelial cell-derived microparticles from patients with obstructive sleep apnea hypoxia syndrome and coronary artery disease increase aortic endothelial cell dysfunction. Cellular Physiology and Biochemistry, 43(6), 2562–2570.

    Article  CAS  PubMed  Google Scholar 

  91. Bikov, A., Kunos, L., Pallinger, E., Lazar, Z., Kis, A., Horvath, G., et al. (2017). Diurnal variation of circulating microvesicles is associated with the severity of obstructive sleep apnoea. Sleep & Breathing, 21(3), 595–600.

    Article  Google Scholar 

  92. Doubell, A. F., Bester, A. J., & Thibault, G. (1991). Annexins V and VI: Major calcium-dependent atrial secretory granule-binding proteins. Hypertension, 18(5), 648–656.

    Article  CAS  PubMed  Google Scholar 

  93. Wang, L., Rahman, M. M., Iida, H., Inai, T., Kawabata, S., Iwanaga, S., et al. (1995). Annexin V is localized in association with Z-line of rat cardiac myocytes. Cardiovascular Research, 30(3), 363–371.

    Article  CAS  PubMed  Google Scholar 

  94. Ueng, K. C., Lin, C. S., Yeh, H. I., Wu, Y. L., Liu, R. H., Tsai, C. F., et al. (2008). Downregulated cardiac annexin VI mRNA and protein levels in chronically fibrillating human atria. Cardiology, 109(3), 208–216.

    Article  CAS  PubMed  Google Scholar 

  95. Jiao, Q., Bai, Y., Akaike, T., Takeshima, H., Ishikawa, Y., & Minamisawa, S. (2009). Sarcalumenin is essential for maintaining cardiac function during endurance exercise training. American Journal of Physiology. Heart and Circulatory Physiology, 297(2), H576–H582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leberer, E., Charuk, J. H., Green, N. M., & MacLennan, D. H. (1989). Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 86(16), 6047–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Minamisawa, S., Uemura, N., Sato, Y., Yokoyama, U., Yamaguchi, T., Inoue, K., et al. (2006). Post-transcriptional downregulation of sarcolipin mRNA by triiodothyronine in the atrial myocardium. FEBS Letters, 580(9), 2247–2252.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, H., Cannell, M. B., Kim, S. J., Watson, J. J., Norman, R., Calaghan, S. C., et al. (2015). Cellular hypertrophy and increased susceptibility to spontaneous calcium-release of rat left atrial myocytes due to elevated afterload. PLoS One, 10(12), e0144309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Junge, W., & Nelson, N. (2015). ATP synthase. Annual Review of Biochemistry, 84, 631–657.

    Article  CAS  PubMed  Google Scholar 

  100. Chen, G., Guo, H., Song, Y., Chang, H., Wang, S., Zhang, M., et al. (2016). Long noncoding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Molecular Medicine Reports, 14(6), 5311–5317.

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z., Wang, X., Wang, W., Du, J., Wei, J., Zhang, Y., et al. (2017). Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. Journal of Molecular and Cellular Cardiology, 108, 73–85.

    Article  CAS  PubMed  Google Scholar 

  102. Mio, Y., Bienengraeber, M. W., Marinovic, J., Gutterman, D. D., Rakic, M., Bosnjak, Z. J., et al. (2008). Age-related attenuation of isoflurane preconditioning in human atrial cardiomyocytes: Roles for mitochondrial respiration and sarcolemmal adenosine triphosphate-sensitive potassium channel activity. Anesthesiology, 108(4), 612–620.

    Article  CAS  PubMed  Google Scholar 

  103. Ferko, M., Kancirova, I., Jasova, M., Carnicka, S., Murarikova, M., Waczulikova, I., et al. (2014). Remote ischemic preconditioning of the heart: Protective responses in functional and biophysical properties of cardiac mitochondria. Physiological Research, 63(Suppl 4), S469–S478.

    Article  CAS  PubMed  Google Scholar 

  104. Dybkova, N., Wagner, S., Backs, J., Hund, T. J., Mohler, P. J., Sowa, T., et al. (2014). Tubulin polymerization disrupts cardiac beta-adrenergic regulation of late INa. Cardiovascular Research, 103(1), 168–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Benson, D. W., Wang, D. W., Dyment, M., Knilans, T. K., Fish, F. A., Strieper, M. J., et al. (2003). Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). Journal of Clinical Investigation, 112(7), 1019–1028.

    Article  CAS  PubMed Central  Google Scholar 

  106. Aquila-Pastir, L. A., DiPaola, N. R., Matteo, R. G., Smedira, N. G., McCarthy, P. M., & Moravec, C. S. (2002). Quantitation and distribution of beta-tubulin in human cardiac myocytes. Journal of Molecular and Cellular Cardiology, 34(11), 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  107. Narishige, T., Blade, K. L., Ishibashi, Y., Nagai, T., Hamawaki, M., Menick, D. R., et al. (1999). Cardiac hypertrophic and developmental regulation of the beta-tubulin multigene family. The Journal of Biological Chemistry, 274(14), 9692–9697.

    Article  CAS  PubMed  Google Scholar 

  108. Gonzalez-Granillo, M., Grichine, A., Guzun, R., Usson, Y., Tepp, K., Chekulayev, V., et al. (2012). Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells. Journal of Molecular and Cellular Cardiology, 52(2), 437–447.

    Article  CAS  PubMed  Google Scholar 

  109. Bagur, R., Tanguy, S., Foriel, S., Grichine, A., Sanchez, C., Pernet-Gallay, K., et al. (2016). The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. Biochimica et Biophysica Acta, 1862(6), 1159–1171.

    Article  CAS  PubMed  Google Scholar 

  110. Kuznetsov, A. V., Javadov, S., Guzun, R., Grimm, M., & Saks, V. (2013). Cytoskeleton and regulation of mitochondrial function: The role of beta-tubulin II. Frontiers in Physiology, 4, 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fu, Q., Kim, S., Soto, D., De Arcangelis, V., DiPilato, L., Liu, S., et al. (2014). A long lasting beta1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes. The Journal of Biological Chemistry, 289(21), 14771–14781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cserne Szappanos, H., Muralidharan, P., Ingley, E., Petereit, J., Millar, H. A., & Hool, L. C. (2017). Identification of a novel cAMP dependent protein kinase a phosphorylation site on the human cardiac calcium channel. Scientific Reports, 7(1), 15118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Bobin, P., Varin, A., Lefebvre, F., Fischmeister, R., Vandecasteele, G., & Leroy, J. (2016). Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovascular Research, 110(1), 151–161.

    Article  CAS  PubMed  Google Scholar 

  114. Dhalla, N. S., & Muller, A. L. (2010). Protein kinases as drug development targets for heart disease therapy. Pharmaceuticals (Basel), 3(7), 2111–2145.

    Article  CAS  Google Scholar 

  115. Wang, P. Y., Yu, J., Lin, J. H., & Tsai, W. B. (2011). Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomaterialia, 7(9), 3285–3293.

    Article  CAS  PubMed  Google Scholar 

  116. Goldmann, W. H., & Ingber, D. E. (2002). Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochemical and Biophysical Research Communications, 290(2), 749–755.

    Article  CAS  PubMed  Google Scholar 

  117. DeLeon-Pennell, K. Y., & Lindsey, M. L. (2015). Cardiac aging: Send in the vinculin reinforcements. Science Translational Medicine, 7(292), 292fs26.

    Article  PubMed  CAS  Google Scholar 

  118. Chinthalapudi, K., Rangarajan, E. S., Brown, D. T., & Izard, T. (2016). Differential lipid binding of vinculin isoforms promotes quasi-equivalent dimerization. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9539–9544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zemljic-Harpf, A. E., Miller, J. C., Henderson, S. A., Wright, A. T., Manso, A. M., Elsherif, L., et al. (2007). Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Molecular and Cellular Biology, 27(21), 7522–7537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, J., Zhang, D., Zheng, Y., Zhao, Q., Zheng, M., Kovacevic, Z., et al. (2013). Targeting the metastasis suppressor, NDRG1, using novel iron chelators: Regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Molecular Pharmacology, 83(2), 454–469.

    Article  CAS  PubMed  Google Scholar 

  121. Fang, B. A., Kovacevic, Z., Park, K. C., Kalinowski, D. S., Jansson, P. J., Lane, D. J., et al. (2014). Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica et Biophysica Acta, 1845(1), 1–19.

    CAS  PubMed  Google Scholar 

  122. Stein, S., Thomas, E. K., Herzog, B., Westfall, M. D., Rocheleau, J. V., Jackson 2nd, R. S., et al. (2004). NDRG1 is necessary for p53-dependent apoptosis. The Journal of Biological Chemistry, 279(47), 48930–48940.

    Article  CAS  PubMed  Google Scholar 

  123. Choi, S. J., Oh, S. Y., Kim, J. H., Sadovsky, Y., & Roh, C. R. (2007). Increased expression of N-myc downstream-regulated gene 1 (NDRG1) in placentas from pregnancies complicated by intrauterine growth restriction or preeclampsia. American Journal of Obstetrics and Gynecology, 196(1), 45 e1–45 e7.

    Article  CAS  Google Scholar 

  124. Cangul, H. (2004). Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genetics, 5, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hartwig, J. H., Thelen, M., Rosen, A., Janmey, P. A., Nairn, A. C., & Aderem, A. (1992). MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature, 356(6370), 618–622.

    Article  CAS  PubMed  Google Scholar 

  126. Prieto, D., & Zolessi, F. R. (2017). Functional diversification of the four MARCKS family members in zebrafish neural development. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 328(1–2), 119–138.

    Article  CAS  PubMed  Google Scholar 

  127. Stevens, F. C. (1983). Calmodulin: An introduction. Canadian Journal of Biochemistry and Cell Biology, 61(8), 906–910.

    Article  CAS  PubMed  Google Scholar 

  128. Heidkamp, M. C., Iyengar, R., Szotek, E. L., Cribbs, L. L., & Samarel, A. M. (2007). Protein kinase Cepsilon-dependent MARCKS phosphorylation in neonatal and adult rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 42(2), 422–431.

    Article  CAS  PubMed  Google Scholar 

  129. McGill, C. J., & Brooks, G. (1997). Expression and regulation of 80K/MARCKS, a major substrate of protein kinase C, in the developing rat heart. Cardiovascular Research, 34(2), 368–376.

    Article  CAS  PubMed  Google Scholar 

  130. Li, G. H., Arora, P. D., Chen, Y., McCulloch, C. A., & Liu, P. (2012). Multifunctional roles of gelsolin in health and diseases. Medicinal Research Reviews, 32(5), 999–1025.

    Article  CAS  PubMed  Google Scholar 

  131. Hu, W. S., Ho, T. J., Pai, P., Chung, L. C., Kuo, C. H., Chang, S. H., et al. (2014). Gelsolin (GSN) induces cardiomyocyte hypertrophy and BNP expression via p38 signaling and GATA-4 transcriptional factor activation. Molecular and Cellular Biochemistry, 390(1–2), 263–270.

    Article  CAS  PubMed  Google Scholar 

  132. Li, G. H., Shi, Y., Chen, Y., Sun, M., Sader, S., Maekawa, Y., et al. (2009). Gelsolin regulates cardiac remodeling after myocardial infarction through DNase I-mediated apoptosis. Circulation Research, 104(7), 896–904.

    Article  CAS  PubMed  Google Scholar 

  133. Schrickel, J. W., Fink, K., Meyer, R., Grohe, C., Stoeckigt, F., Tiemann, K., et al. (2009). Lack of gelsolin promotes perpetuation of atrial fibrillation in the mouse heart. Journal of Interventional Cardiac Electrophysiology, 26(1), 3–10.

    Article  PubMed  Google Scholar 

  134. Lader, A. S., Kwiatkowski, D. J., & Cantiello, H. F. (1999). Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. The American Journal of Physiology, 277(6 Pt 1), C1277–C1283.

    Article  CAS  PubMed  Google Scholar 

  135. Pinti, M., Gibellini, L., Liu, Y., Xu, S., Lu, B., & Cossarizza, A. (2015). Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cellular and Molecular Life Sciences, 72(24), 4807–4824.

    Article  CAS  PubMed  Google Scholar 

  136. Bota, D. A., Ngo, J. K., & Davies, K. J. (2005). Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radical Biology & Medicine, 38(5), 665–677.

    Article  CAS  Google Scholar 

  137. Ngo, J. K., Pomatto, L. C., & Davies, K. J. (2013). Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology, 1, 258–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hoshino, A., Okawa, Y., Ariyoshi, M., Kaimoto, S., Uchihashi, M., Fukai, K., et al. (2014). Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circulation. Heart Failure, 7(3), 500–509.

    Article  CAS  PubMed  Google Scholar 

  139. Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.

    Article  CAS  PubMed  Google Scholar 

  140. Parry, T. L., & Willis, M. S. (2016). Cardiac ubiquitin ligases: Their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. Biochimica et Biophysica Acta, 1862(12), 2259–2269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Willis, M. S., Bevilacqua, A., Pulinilkunnil, T., Kienesberger, P., Tannu, M., & Patterson, C. (2014). The role of ubiquitin ligases in cardiac disease. Journal of Molecular and Cellular Cardiology, 71, 43–53.

    Article  CAS  PubMed  Google Scholar 

  142. Weber, K., & Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244(16), 4406–4412.

    Article  CAS  Google Scholar 

  143. Dunbar, B. S. (2012). Two-dimensional electrophoresis and immunological techniques. New York: Springer Science & Business Media.

    Google Scholar 

  144. Schirle, M., Heurtier, M.-A., & Kuster, B. (2003). Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Molecular & Cellular Proteomics, 2(12), 1297–1305.

    Article  CAS  Google Scholar 

  145. Andersen, J. S., & Mann, M. (2006). Organellar proteomics: Turning inventories into insights. EMBO Reports, 7(9), 874–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Authors thank Dr. Babu Suryadevara and Clarkson University’s Center for Advanced Materials Processing (CAMP) for the initial funding on the OSA project. We would also like to thanks Kendrick Laboratories, Inc. for the 2D-PAGE analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devika Channaveerappa or Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Channaveerappa, D., Panama, B.K., Darie, C.C. (2019). Mass Spectrometry Based Comparative Proteomics Using One Dimensional and Two Dimensional SDS-PAGE of Rat Atria Induced with Obstructive Sleep Apnea. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_32

Download citation

Publish with us

Policies and ethics