Skip to main content

Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1140))

Abstract

Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction, and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein’s structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation, we will describe two proteins—lysozyme and myoglobin. As an application of MS-based assignment of disulfide bridges, the case of the spider venom polypeptide Phα1β will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Forster, M. J. (2002). Molecular modelling in structural biology. Micron, 33(4), 365–384.

    Article  CAS  PubMed  Google Scholar 

  2. Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta - General Subjects, 1862(2), 324–334.

    Article  CAS  PubMed  Google Scholar 

  3. Alber, F., Eswar, N., & Sali, A. (2004). Structure determination of macromolecular complexes by experiment and computation. In J. Bujnicki (Ed.), Practical bioinformatics (pp. 73–96). Berlin: Springer.

    Google Scholar 

  4. Judge, P. J., & Watts, A. (2011). Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Current Opinion in Chemical Biology, 15(5), 690–695.

    Article  CAS  PubMed  Google Scholar 

  5. Tang, L., & Johnson, J. E. (2002). Structural biology of viruses by the combination of electron cryomicroscopy and X-ray crystallography. Biochemistry, 41(39), 11517–11524.

    Article  CAS  PubMed  Google Scholar 

  6. Thonghin, N., Kargas, V., Clews, J., Ford, R. C. (2018). Cryo-electron microscopy of membrane proteins. Methods, 147, 176–186.

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez, R., & Sali, A. (1997). Evaluation of comparative protein structure modeling by MODELLER-3. Proteins, Suppl 1, 50–58.

    Article  CAS  PubMed  Google Scholar 

  8. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, H.-L., & Hsu, J.-P. (2005). Recent developments in structural proteomics for protein structure determination. Proteomics, 5(8), 2056–2068.

    Article  CAS  PubMed  Google Scholar 

  10. Simons, K. T., Strauss, C., & Baker, D. (2001). Prospects for ab initio protein structural genomics. Journal of Molecular Biology, 306(5), 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  11. Bonneau, R., & Baker, D. (2001). Ab initio protein structure prediction: Progress and prospects. Annual Review of Biophysics and Biomolecular Structure, 30, 173–189.

    Article  CAS  PubMed  Google Scholar 

  12. Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540), 93–96.

    Article  CAS  PubMed  Google Scholar 

  13. Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679–6685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raval, A., Piana S., Eastwood, M. P., Shaw, D. E. (2012). Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins, 80(8), 2071–2079.

    Google Scholar 

  15. Chen, J., & Brooks 3rd, C. L. (2007). Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins, 67(4), 922–930.

    Article  CAS  PubMed  Google Scholar 

  16. Šali, A., & Kuriyan, J. (1999). Challenges at the frontiers of structural biology. Trends in Cell Biology, 9(12), M20–M24.

    Article  PubMed  Google Scholar 

  17. Morin, A., & Sliz, P. (2013). Structural biology computing: Lessons for the biomedical research sciences. Biopolymers, 99(11), 809–816.

    Article  CAS  PubMed  Google Scholar 

  18. Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A. (2011). Critical assessment of methods of protein structure prediction (CASP)—Round IX. Proteins: Structure, Function, and Bioinformatics, 79(S10), 1–5.

    Article  CAS  Google Scholar 

  19. Wishart, D. S. (2005). Bioinformatics in drug development and assessment. Drug Metabolism Reviews, 37(2), 279–310.

    Article  CAS  PubMed  Google Scholar 

  20. Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., Beretta, L., et al. (2011). The human proteome project: Current state and future direction. Molecular & Cellular Proteomics, 10(7), M111 009993.

    Article  CAS  Google Scholar 

  21. Aebersold, R., Bader, G. D., Edwards, A. M., van Eyk, J. E., Kussmann, M., Qin, J., et al. (2012). The biology/disease-driven human proteome project (B/D-HPP): Enabling protein research for the life sciences community. Journal of Proteome Research, 12(1), 23–27.

    Article  PubMed  CAS  Google Scholar 

  22. Omenn, G. S., Lane, L., Lundberg, E. K., Overall, C. M., Deutsch, E. W. (2017). Progress on the HUPO draft human proteome: 2017 metrics of the human proteome project. Journal of Proteome Research, 16(12), 4281–4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Congreve, M., Murray, C. W., & Blundell, T. L. (2005). Keynote review: Structural biology and drug discovery. Drug Discovery Today, 10(13), 895–907.

    Article  CAS  PubMed  Google Scholar 

  24. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Darie C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.

    Google Scholar 

  25. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt K., Darie, C. C. (2014). Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71, 205.

    Article  PubMed  CAS  Google Scholar 

  26. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  27. Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., Darie C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.

    Article  CAS  PubMed  Google Scholar 

  28. Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2013). Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cellular and Molecular Life Sciences, 70, 2835.

    Article  PubMed  CAS  Google Scholar 

  29. Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2012). Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. The FEBS Journal, 279(14), 2579–2594.

    Article  CAS  Google Scholar 

  30. Sokolowska, I., Woods, A. G., Wagner, J., Dorier, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.

    Google Scholar 

  31. Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J., Darie, C. C. (2012). Potential biomarkers in psychiatry: Focus on the cholesterol system. Journal of Cellular and Molecular Medicine, 16(6), 1184–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.

    Google Scholar 

  33. Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 60(20), 2299–2301.

    Article  CAS  PubMed  Google Scholar 

  34. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64–71.

    Article  CAS  PubMed  Google Scholar 

  35. Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., Darie, C. C. (2012). Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. The Journal of Biological Chemistry, 287(3), 1719–1733.

    Article  CAS  Google Scholar 

  36. Dyachenko, A., Gruber, R., Shimon, L., Horovitz, A., Sharon, M. (2013). Allosteric mechanisms can be distinguished using structural mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7235–7239.

    Article  CAS  Google Scholar 

  37. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., Darie, C. C. (2013). Investigation of stable and transient protein–protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557.

    Article  CAS  PubMed  Google Scholar 

  38. Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66(7), 721–733.

    Google Scholar 

  39. Darie, C. C. (2013). Mass spectrometry and its applications in life sciences. Australian Journal of Chemistry, 66(7), 719–720.

    Article  CAS  Google Scholar 

  40. Florian, P. E., Macovei, A., Lazar, C., Milac, A. L., Sokolowska, I., Darie, C. C., et al. (2013). Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. Journal of Medical Virology, 85(5), 780–788.

    Article  CAS  PubMed  Google Scholar 

  41. Petrareanu, C., Macovei, A., Sokolowska, I., Woods, A. G., Lazar, C., Radu, G. L., et al. (2013). Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One, 8(8), e71859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sokolowska, I., Dorobantu, C., Woods, A. G., Macovei, A., Branza-Nichita, N., Darie, C. C. (2012). Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science, 10(1), 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jurneczko, E., & Barran, P. E. (2011). How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst, 136(1), 20–28.

    Article  CAS  PubMed  Google Scholar 

  44. Benesch, J. L. P., & Ruotolo, B. T. (2011). Mass spectrometry: Come of age for structural and dynamical biology. Current Opinion in Structural Biology, 21(5), 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walzthoeni, T., Leitner. A., Stengel, F., Aebersold, R. (2013). Mass spectrometry supported determination of protein complex structure. Current Opinion in Structural Biology, 23(2), 252–260.

    Article  CAS  PubMed  Google Scholar 

  46. Wintrode, P. (2013). Mass spectrometry in structural biology. Biochimica et Biophysica Acta, Proteins and Proteomics, 1834(6), 1187.

    Article  CAS  Google Scholar 

  47. Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576–1590.

    Article  CAS  PubMed  Google Scholar 

  48. Houde, D., Arndt, J., Domeier, W., Berkowitz, S., Engen, J. R. (2009). Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Analytical Chemistry, 81(7), 2644–2651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilderman, P. R., Shah, M. B., Liu, T., Li, S., Hsu, S., Roberts, A. G. et al. (2010). Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. The Journal of Biological Chemistry, 285(49), 38602–38611.

    Article  CAS  Google Scholar 

  50. Shah, M. B., Jang, H. H., Wilderman, P. R., Lee, D., Li, S., Zhang, Q., et al. (2016). Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Biophysical Chemistry, 216, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaltashov, I. A., Bobst, C. E., & Abzalimov, R. R. (2009). H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: Is there a need for a top-down approach? Analytical Chemistry, 81(19), 7892–7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konijnenberg, A., Butterer, A., & Sobott, F. (2013). Native ion mobility-mass spectrometry and related methods in structural biology. Biochimica et Biophysica Acta, 1834(6), 1239–1256.

    Article  CAS  PubMed  Google Scholar 

  53. Chalmers, M. J., Busby, S. A., Pascal, B. D., West, G. M., Griffin, P. R. (2011). Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Review of Proteomics, 8(1), 43–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kan, Z. Y., Walters, B. T., Mayne, L., Englander, S.W. (2013). Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proceedings of the National Academy of Sciences, 110, 16438.

    Article  CAS  Google Scholar 

  55. Leitner, A., Joachimiak, L. A., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B. et al. (2012). The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure, 20(5), 814–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalisman, N., Adams, C. M., & Levitt, M. (2012). Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2884–2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiosze-Becker, K., Kiosze-Becker, K., Ori, A., Gerovac, M., Heuer, A., Nürenberg-Goloub, E., Rashid, U. J. et al. (2016). Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nature Communications, 7, 13248.

    Google Scholar 

  58. Vos, S. M., Farnung, L., Urlaub, H., Cramer, P. (2018). Structure of paused transcription complex Pol II-DSIF-NELF. Nature, 560(7720), 601–606.

    Google Scholar 

  59. Barrera, N. P., Isaacson, S. C., Zhou, M., Bavro, V. N., Welch, A., Schaedler, T. A. et al. (2009). Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nature Methods, 6(8), 585–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schey, K. L., Grey, A. C., & Nicklay, J. J. (2013). Mass spectrometry of membrane proteins: A focus on aquaporins. Biochemistry, 52(22), 3807–3817.

    Article  CAS  PubMed  Google Scholar 

  61. Laganowsky, A., Reading, E., Hopper, J. T. S., Robinson, C. V. et al. (2013). Mass spectrometry of intact membrane protein complexes. Nature Protocols, 8(4), 639–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sundstrom, J. M., Tash, B. R., Murakami, T., Flanagan, J. M., Bewley, M. C., Stanley, B. A. et al. (2009). Identification and analysis of occludin phosphosites: A combined mass spectrometry and bioinformatics approach. Journal of Proteome Research, 8(2), 808–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Micalella, C., Martignon, S., Bruno, S., Pioselli, B., Caglio, R., Valetti, F. et al. (2011). X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: A multidisciplinary characterization of catechol 1,2 dioxygenase. Biochimica et Biophysica Acta, 1814(6), 817–823.

    Article  CAS  Google Scholar 

  64. Mikulecky, P., Zahradník, J., Kolenko, P., Černý, J., Charnavets, T., Kolářová, L. et al. (2016). Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity. Acta Crystallographica. Section D, Structural Biology, 72(Pt 9), 1017–1025.

    Article  CAS  Google Scholar 

  65. Carletti, E., Colletier, J. F., Schopfer, L. M., Santoni, G. L., Masson, P., Lockridge, O., et al. (2013). Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chemical Research in Toxicology, 26(2), 280–289.

    Article  CAS  PubMed  Google Scholar 

  66. Lang, B. S., Gorren, A. C., Oberdorfer, G., Wenzl, M. V., Furdui, C. M., Poole, L. B. et al. (2012). Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: Reaction intermediates revealed by crystallography and mass spectrometry. The Journal of Biological Chemistry, 287(45), 38124–38134.

    Article  CAS  Google Scholar 

  67. Chan, D. S., Mendes, V., Thomas, S. E., McConnell, B. N., Matak-Vinković, D., Coyne, A. G. et al. (2017). Fragment screening against the EthR-DNA interaction by native mass spectrometry. Angewandte Chemie (International Ed. in English), 56(26), 7488–7491.

    Article  CAS  PubMed  Google Scholar 

  68. Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. (2012). Structural investigation of tumor differentiation factor. Biotechnology and Applied Biochemistry, 59(6), 445–450.

    Article  CAS  PubMed  Google Scholar 

  69. Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. (2013). Tumor differentiation factor (TDF) and its receptor (TDF-R): Is TDF-R an inducible complex with multiple docking sites? Modern Chemistry & Applications, 1(3), 108.

    Google Scholar 

  70. Roy, U., Sokolowska, I., Woods, A. G., Darie, C. C. et al. (2013). Structural evaluation and analyses of tumor differentiation factor. The Protein Journal, 32(7), 512–518.

    Article  CAS  PubMed  Google Scholar 

  71. Woods, A. G.,Sokolowska, I., Deinhardt, K., Sandu, C., Darie, C. C. (2014). Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Structure & Function, 219, 1333.

    Article  PubMed  CAS  Google Scholar 

  72. Cheetham, J. C., Artymiuk, P. J., & Phillips, D. C. (1992). Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. Journal of Molecular Biology, 224(3), 613–628.

    Article  CAS  PubMed  Google Scholar 

  73. Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33, W368–W371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Myers, J., Grothaus, G., Narayanan, S., Onufriev, A. (2006). A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins, 63, 928–938.

    Article  CAS  Google Scholar 

  75. Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Research, 40(W1), W537–W541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guex, N., & Peitsch, M. C. (1996). Swiss-PdbViewer: A fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Quaterly Newsletter, 77, 7.

    Google Scholar 

  77. Mehler, E. L., & Guarnieri, F. (1999). A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophysical Journal, 75, 3–22.

    Article  Google Scholar 

  78. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 181(4610), 662–666.

    Article  CAS  PubMed  Google Scholar 

  79. Yang, F., & Phillips Jr., G. N. (1996). Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. Journal of Molecular Biology, 256(4), 762–774.

    Article  CAS  PubMed  Google Scholar 

  80. Urayama, P., Phillips Jr., G. N., & Gruner, S. M. (2002). Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure, 10(1), 51–60.

    Article  CAS  PubMed  Google Scholar 

  81. Sage, J. T., Morikis, D., Li, P., Champion, P. M. (1992). Low pH myoglobin photoproducts. Biophysical Journal, 61(4), 1041–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duprat, A. F., Traylor, T. G., Wu, G. Z., Coletta, M., Sharma, V. S., Walda, K. N. et al. (1995). Myoglobin-NO at low pH: Free four-coordinated heme in the protein pocket. Biochemistry, 34(8), 2634–2644.

    Article  CAS  PubMed  Google Scholar 

  83. Iben, I. E., Cowen, B. R., Sanches, R., Friedman, J. M. (1991). Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures. Biophysical Journal, 59(4), 908–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Han, S., Rousseau, D. L., Giacometti, G., Brunori, M. (1990). Metastable intermediates in myoglobin at low pH. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 205–209.

    Article  CAS  Google Scholar 

  85. Cordeiro Mdo, N., de Figueiredo, S. G., Valentim Ado, C., Diniz, C. R., von Eickstedt, V. R., Gilroy, J. et al. (1993). Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon, 31(1), 35–42.

    Article  CAS  Google Scholar 

  86. Souza, A. H., Ferreira, J., Cordeiro Mdo, N., Vieira, L. B., De Castro, C. J., Trevisan, G. et al. (2008). Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain, 140(1), 115–126.

    Article  CAS  PubMed  Google Scholar 

  87. Vieira, L. B., Kushmerick, C., Hildebrand, M. E., Garcia, E., Stea, A., Cordeiro, M. N. et al. (2005). Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. The Journal of Pharmacology and Experimental Therapeutics, 314(3), 1370–1377.

    Article  CAS  Google Scholar 

  88. Rigo, F. K., Trevisan, G., Rosa, F., Dalmolin, G. D., Otuki, M. F., Cueto, A. P. et al. (2013). Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Science, 104(9), 1226–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, C. Y., Kim, T. W., Weng, S. A., Lee, B. R., Yang, M. L., Gotto, A. M. (1990). Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. Proceedings of the National Academy of Sciences of the United States of America, 87(14), 5523–5527.

    Article  CAS  Google Scholar 

  90. Darie, C. C., Biniossek, M. L., Jovine, L., Litscher, E. S., Wassarman, P. M. (2004). Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry, 43(23), 7459–7478.

    Article  CAS  PubMed  Google Scholar 

  91. Wormwood, K. L., Ngounou Wetie, A. G., Gomez, M. V., Ju, Y., Kowalski, P., Mihasan, M., et al. (2018). Structural characterization and disulfide assignment of spider peptide phalpha1beta by mass spectrometry. Journal of the American Society for Mass Spectrometry, 29(5), 827–841.

    Article  CAS  PubMed  Google Scholar 

  92. Nadezhdin, K. D., Romanovskaia, D. D., Sachkova, M. Y., Oparin, P. B., Kovalchuk, S. I., Grishin, E. V. et al. (2017). Modular toxin from the lynx spider Oxyopes takobius: Structure of spiderine domains in solution and membrane-mimicking environment. Protein Science, 26(3), 611–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G, Gumienny, R., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vyas, V. K., Ukawala, R. D., Ghate, M., Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein & Peptide Science, 7(3), 217–227.

    Article  CAS  Google Scholar 

  96. Villegas, E., Adachi-Akahane, S., Bosmans, F., Tytgat, J., Nakajima, T., Corzo, G. (2008). Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon, 52(2), 228–236.

    Article  CAS  PubMed  Google Scholar 

  97. Cheek, S., Krishna, S. S., & Grishin, N. V. (2006). Structural classification of small, disulfide-rich protein domains. Journal of Molecular Biology, 359(1), 215–237.

    Article  CAS  PubMed  Google Scholar 

  98. Kamikubo, Y., De Guzman, R., Kroon, G., Curriden, S., Neels, J. G., Churchill, M. J., et al. (2004). Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Biochemistry, 43(21), 6519–6534.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, A. (2007). Functional structure of the somatomedin B domain of vitronectin. Protein Science, 16(7), 1502–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rigo, F. K., Trevisan, G., De Prá, S. D., Cordeiro, M. N., Borges, M. H., Silva, J. F., et al. (2017). The spider toxin Phα1β recombinant possesses strong analgesic activity. Toxicon, 133, 145–152.

    Article  CAS  PubMed  Google Scholar 

  101. Boja, E. S., Hoodbhoy, T., Fales, H. M., Dean, J. (2003). Structural characterization of native mouse zona pellucida proteins using mass spectrometry. The Journal of Biological Chemistry, 278(36), 34189–34202.

    Article  CAS  Google Scholar 

  102. Darie, C. C., Biniossek, M. L., Gawinowicz, M. A., Milgrom, Y., Thumfart, J. O., Jovine, L. et al. (2005). Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. The Journal of Biological Chemistry, 280(45), 37585–37598.

    Article  CAS  Google Scholar 

  103. Han, L., Monné, M., Okumura, H., Schwend, T., Cherry, A. L., Flot, D., et al. (2010). Insights into egg coat assembly and egg-sperm interaction from the X-ray structure of full-length ZP3. Cell, 143(3), 404–415.

    Article  CAS  PubMed  Google Scholar 

  104. Jovine, L., Darie, C. C., Litscher, E. S., Wassarman, P. M. (2005). Zona pellucida domain proteins. Annual Review of Biochemistry, 74, 83–114.

    Article  CAS  PubMed  Google Scholar 

  105. Monne, M., Han, L., Schwend, T., Burendahl, S., Jovine, L. (2008). Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature, 456(7222), 653–657.

    Article  PubMed  CAS  Google Scholar 

  106. Zhao, M., Boja, E. S., Hoodbhoy, T., Nawrocki, J., Kaufman, J. B., Kresge, N. et al. (2004). Mass spectrometry analysis of recombinant human ZP3 expressed in glycosylation-deficient CHO cells. Biochemistry, 43(38), 12090–12104.

    Article  CAS  PubMed  Google Scholar 

  107. Kirshenbaum, N., Michaelevski, I., & Sharon, M. (2010). Analyzing large protein complexes by structural mass spectrometry. Journal of Visualized Experiments, (40).

    Google Scholar 

  108. Sharon, M. (2013). Structural MS pulls its weight. Science, 340(6136), 1059–1060.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KLW was supported by the ASPIRE Graduate Student Fellowship through Clarkson University’s CUPO Office. MM was supported by the Fulbright Senior Postdoctoral Fellowship awarded by the Romania-USA Fulbright Commission to MM (guest) and CCD (host). MM and CCD are thankful to the newly established Erasmus+ exchange program between “Al. I. Cuza” University of Iasi, Romania and Clarkson University of Potsdam, NY, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mihăşan, M., Wormwood, K.L., Sokolowska, I., Roy, U., Woods, A.G., Darie, C.C. (2019). Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_15

Download citation

Publish with us

Policies and ethics