Skip to main content

Removing the Dye Kitchen from the Textile Supply Chain

  • Chapter
  • First Online:
Technology-Driven Sustainability
  • 2881 Accesses

Abstract

This research explores the concept of mimicking structural colour in nature as an alternative to traditional textile colouration techniques. In particular, the research focuses on certain species of insect that have inspired new research and development in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akarslan, F., & Demiralay, H. (2015). Effects of textile materials harmful to human health. Acta Physica Polonica A, 128, 402–408.

    Article  Google Scholar 

  • Baxter Packwood, K. (2001). Getting started with natural dying. Ames, IA: Packwood.

    Google Scholar 

  • Bird, C. L., Boston, W. S., & Society of Dyers Colourists. (1975). The theory of coloration of textiles. Bradford: Society of Colourists for Dyers Company Publications Trust.

    Google Scholar 

  • Chhabra, E. (2015). Natural dyes versus synthetic: Which is more sustainable? The Guardian (online). Retrieved November 24, 2018, from https://www.theguardian.com/sustainable-business/sustainable-fashion-blog/2015/mar/31/natural-dyes-v-synthetic-which-is-more-sustainable.

  • Claudio, L. (2007). Waste Couture: Environmental impact of the clothing industry. Environmental Health Perspectives, 115(9), 449–454.

    Article  Google Scholar 

  • Das, S., Shanmugam, N., Kumar, A., & Jose, S. (2017). Review: Potential of biomimicry in the field of textile technology. Bioinspired, Biomimetic and Nanobiomaterials Review, 1–12.

    Google Scholar 

  • DuPont. (2018). What is textile desizing? DuPont (online). Retrieved November 24, 2018, from http://www.dupont.com/products-and-services/industrial-biotechnology/industrial-enzymes-bioactives/articles/what-is-desizing.html.

  • Ghiradella, H. (1991). Light and color on the wing: Structural colors in butterflies and moths. Applied Optics, 30(24), 3492–3500.

    Article  Google Scholar 

  • Henninger, C. E., Alevizou, P. J., Oates, C. J., & Cheng, R. (2015). Sustainable supply chain management in the slow-fashion industry. In T. M. Choi & T. C. E. Cheng (Eds.), Sustainable fashion supply chain management: From sourcing to retailing. Heidelberg: Springer.

    Google Scholar 

  • Ingamells, W. (1993). Colour for textiles. West Yorkshire.

    Google Scholar 

  • Irfan, M., Zhang, H., Syed, U., & Hou, A. (2018). Low liquor dying of cotton fabric with reactive dye by an eco-friendly technique. Journal of Cleaner Production, 197, 1480–1487.

    Article  Google Scholar 

  • Jones, C. (2017). Textile materials inspired by structural colour in nature. PhD thesis, University of Manchester.

    Google Scholar 

  • Kang, J. H., Kim, S. H., Fernandez-Nieves, A., & Reichmanis, E. (2017). Amplified photon upconversion by photonic shell of cholesteric liquid crystals. Journal of the American Chemical Society, 139(16), 5708–5711.

    Article  Google Scholar 

  • Kant, R. (2012). Textile dyeing industry an environmental hazard. Nature Science, 4(1), 17027–17032.

    Google Scholar 

  • Kaye, L. (2013). Clothing to dye for: The textile sector must confront water risks. The Guardian (online). Retrieved November 24, 2018, from https://www.theguardian.com/sustainable-business/dyeing-textile-sector-water-risks-adidas.

  • Kinoshita, S. (2008). Structural colors in the realm of nature. Singapore: World Scientific.

    Book  Google Scholar 

  • Kobya, M., Demirbas, E., Can, O. T., & Bayramoglu, M. (2006). Treatment of levafix orange textile dye solution by electrocoagulation. Journal of Hazardous Materials, 132(2/3), 183–188.

    Article  Google Scholar 

  • Lagerwall, J. P. F., & Scalia, G. (2012). A new era for liquid crystal research: Applications for liquid crystals in soft matter nano-, bio- and microtechnology. Current Applied Physics, 12, 1387–1412.

    Article  Google Scholar 

  • Lambert, D. M., Croxton, K. L., Garcıa-Dastugue, S. J., Knemeyer, M., & Rogers, D. S. (2006). Supply chain management processes, partnerships, performance (2nd ed.). Jacksonville, FL: Hart-ley Press.

    Google Scholar 

  • Liu, K., Zhang, X., & Yan, K. (2018). Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydrate Polymers, 188, 221–227.

    Article  Google Scholar 

  • McLaren, K. (1986). The colour science of dyes and pigments (2nd ed.). Bristol: Hilger.

    Google Scholar 

  • Nassau, K. (2001). The physics and chemistry of color. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Picot, O. T., Dai, M., Broer, D. J., Peijs, T., & Bastiaansen, C. W. M. (2013). New approach toward reflective films and fibers using cholesteric liquid-crystal coatings. ACS Applied Materials & Interfaces, 5(15), 7117–7121.

    Article  Google Scholar 

  • Pursiainen, O. L. J., Baumberg, J. J., Winkler, H., VIel, B., Spahn, P., & Ruhl, T. (2008). Shear-induced organization in flexible polymer opals. Advanced Materials, 20(8), 1484–1487.

    Article  Google Scholar 

  • Robertson, S. (2011). An investigation of the design potential of thermochromic textiles used with electronic heat-profiling circuitry. Doctoral dissertation, Heriot-Watt University.

    Google Scholar 

  • Saito, A., Ishibashi, K., Ohga, J., Hirai, Y., & Kuwahara, Y. (2018). Fabrication process of large-are Morpho-colour flexible film via flexible nano-imprint mold. Journal of Photopolymer Science and Technology, 31(1), 113–119.

    Article  Google Scholar 

  • Shao, J., Liu, G., & Zhou, L. (2016). Biomimetic nanocoatings for structural coloration of textiles. In J. Hu (Ed.), Active coatings for smart textiles (pp. 269–299). Duxford: Woodhead Publishing.

    Chapter  Google Scholar 

  • Sharma, V., Crne, M., Park, J. O., & Srinivasarao, M. (2009). Structural origin of circularly polarized iridescence in jeweled beetles. Science, 325(5939), 449.

    Article  Google Scholar 

  • Tabata, H., Kumazawa, K., Funakawa, M., Jun-ichi, T., & Akimoto, M. (1996). Microstructures and optical properties of scales of butterfly wings. Optical Review, 3(2), 139–145.

    Article  Google Scholar 

  • Tejin. (2010). Chomagenic fibre. Transmaterial (online). Retrieved November 24, 2018, from http://transmaterial.net/morphotex/.

  • The True Cost. (2015). The true cost, 26th May 2015.

    Google Scholar 

  • Trusted Clothes. (2016). Impact of dyes. Trusted Clothes (online). Retrieved November 24, 2018, from https://www.trustedclothes.com/blog/2016/06/23/impact-of-dyes/.

  • Van Berkel, R. (2017). Water efficiency in textile processing. UN (online). Retrieved November 24, 2018, from http://kms.recpnet.org/uploads/resource/2845a5b02cca6a6ba7cd90735a9e1575.pdf.

  • Vukusic, P., Sambles, J. R., Lawrence, C. R., & Wootton, R. J. (1999). Quantified interference and diffraction in single morpho buttery scales. Proceedings of the Royal Society of London B: Biological Sciences, 266(1427), 1403–1411.

    Article  Google Scholar 

  • Walter, B. (1895). Die Oberachen-oder Schillerfarben. F. Vieweg and son.

    Google Scholar 

  • Yavuz, G., Zille, A., Seventekin, N., & Souto, A. P. (2018). Structural coloration of chitosan cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals. Carbohydrate Polymers, 193, 343–352.

    Article  Google Scholar 

  • Yu, D., Wu, M., Lin, J., & Zhu, J. (2018). Economical low-temperature bleaching of cotton fabric using an activated peroxide system coupling cupric ions with bicarbonate. Fibres & Polymers, 19(9), 1898–1907.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, C., Henninger, C.E. (2020). Removing the Dye Kitchen from the Textile Supply Chain. In: Vignali, G., Reid, L.F., Ryding, D., Henninger, C.E. (eds) Technology-Driven Sustainability. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-15483-7_5

Download citation

Publish with us

Policies and ethics