Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 778 Accesses

Abstract

Modeling of shock compression of isotropic, polycrystalline elastic-plastic solids that deform by dislocation glide is undertaken. General governing equations are presented in forms referred to the thermoelastically unloaded intermediate configuration. Internal energy density of the material depends on a thermoelastic Eulerian strain tensor, entropy, and an internal state variable representative of dislocation density. Dislocation glide is incompressible, but inelastic volume changes arising from residual local strain fields and core effects of dislocations are captured. A numerical method is advanced for extracting inelastic constitutive response information from particle velocity histories of polycrystalline samples under planar shock loading. The only parameters entering the procedure are fundamental thermoelastic properties and assumed bounds on the fraction of plastic work corresponding to energy storage of generated dislocations in the lattice. Densities of statistically stored and geometrically necessary dislocations, in addition to shear stress, plastic strain, plastic strain rate, and temperature, are an outcome of the analysis. The model is implemented for polycrystalline aluminum and copper. Certain results are compared with others in the literature obtained under different kinematic and thermodynamic assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asaro, R.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)

    MATH  ADS  Google Scholar 

  2. Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  ADS  Google Scholar 

  3. Austin, R., McDowell, D.: A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast. 27, 1–24 (2011)

    Article  Google Scholar 

  4. Austin, R., McDowell, D.: Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int. J. Plast. 32, 134–154 (2012)

    Article  Google Scholar 

  5. Bammann, D., Chiesa, M., Horstemeyer, M., Weingarten, L.: Failure in ductile materials using finite element methods. In: Jones, N., Wierzbicki, T. (eds.) Structural Crashworthiness and Failure, pp. 1–54. Elsevier, London (1993)

    Google Scholar 

  6. Becker, R.: Effects of crystal plasticity on materials loaded at high pressures and strain rates. Int. J. Plast. 20, 1983–2006 (2004)

    Article  MATH  Google Scholar 

  7. Bennett, K., Regueiro, R., Borja, R.: Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int. J. Plast. 77, 214–245 (2016)

    Article  Google Scholar 

  8. Bever, M., Holt, D., Titchener, A.: The stored energy of cold work. Prog. Mater. Sci. 17, 5–177 (1973)

    Article  Google Scholar 

  9. Bilby, B., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A 231, 263–273 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bilby, B., Gardner, L., Stroh, A.: Continuous distributions of dislocations and the theory of plasticity. In: Proceedings of the 9th International Congress of Applied Mechanics, vol. 8, pp. 35–44. University de Bruxelles, Brussels (1957)

    Google Scholar 

  11. Bishop, J., Hill, R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philos. Mag. 42, 414–427 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bulatov, V., Richmond, O., Glazov, M.: An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum. Acta Mater. 47, 3507–3514 (1999)

    Article  Google Scholar 

  13. Casem, D., Dandekar, D.: Shock and mechanical response of 2139-T8 aluminum. J. Appl. Phys. 111, 063508 (2012)

    Article  ADS  Google Scholar 

  14. Cheng, J., Ghosh, S.: A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int. J. Plast. 67, 148–170 (2015)

    Article  Google Scholar 

  15. Chua, J., Ruoff, A.: Pressure dependence of the yield stress of potassium at low homologous temperature. J. Appl. Phys. 46, 4659–4663 (1975)

    Article  ADS  Google Scholar 

  16. Clarebrough, L., Hargreaves, M., West, G.: The density of dislocations in compressed copper. Acta Metall. 5, 738–740 (1957)

    Article  Google Scholar 

  17. Clayton, J.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53, 261–301 (2005)

    MATH  ADS  Google Scholar 

  18. Clayton, J.: A model for deformation and fragmentation in crushable brittle solids. Int. J. Impact Eng. 35, 269–289 (2008)

    Article  Google Scholar 

  19. Clayton, J.: A non-linear model for elastic dielectric crystals with mobile vacancies. Int. J. Non Linear Mech. 44, 675–688 (2009)

    Article  ADS  Google Scholar 

  20. Clayton, J.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  21. Clayton, J.: Modeling effects of crystalline microstructure, energy storage mechanisms, and residual volume changes on penetration resistance of precipitate-hardened aluminum alloys. Compos. B: Eng. 40, 443–450 (2009)

    Article  Google Scholar 

  22. Clayton, J.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 173, 151–172 (2010)

    MATH  Google Scholar 

  23. Clayton, J.: Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int. J. Plast. 26, 1357–1386 (2010)

    MATH  Google Scholar 

  24. Clayton, J.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107, 013520 (2010)

    ADS  Google Scholar 

  25. Clayton, J.: A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J. Appl. Mech. 78, 011013 (2011)

    ADS  Google Scholar 

  26. Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  27. Clayton, J.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012)

    Article  MathSciNet  Google Scholar 

  28. Clayton, J.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Clayton, J.: An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 67, 127–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Clayton, J.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014)

    Book  Google Scholar 

  31. Clayton, J.: Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic-plastic theories. Int. J. Appl. Mech. 6, 1450048 (2014)

    Article  Google Scholar 

  32. Clayton, J.: Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Extreme Mech. Lett. 3, 113–122 (2015)

    Article  Google Scholar 

  33. Clayton, J.: Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 95, 476–510 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Clayton, J.: Modeling and simulation of ballistic penetration of ceramic-polymer-metal layered systems. Math. Probl. Eng. 2015, 709498 (2015)

    Google Scholar 

  35. Clayton, J.: Nonlinear thermomechanics for analysis of weak shock profile data in ductile polycrystals. J. Mech. Phys. Solids 124, 714–757 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  36. Clayton, J., Bammann, D.: Finite deformations and internal forces in elastic-plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice statics. J. Eng. Mater. Technol. 131, 041201 (2009)

    Article  Google Scholar 

  37. Clayton, J., Lloyd, J.: Analysis of nonlinear elastic aspects of precursor attenuation in shock-compressed metallic crystals. J. Phys. Commun. 2, 045032 (2018)

    Article  Google Scholar 

  38. Clayton, J., McDowell, D.: Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int. J. Solids Struct. 40, 5669–5688 (2003)

    Article  MATH  Google Scholar 

  39. Clayton, J., McDowell, D.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)

    Article  MATH  Google Scholar 

  40. Clayton, J., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int. J. Solids Struct. 64–65, 191–207 (2015)

    Article  Google Scholar 

  41. Clayton, J., Schroeter, B., Graham, S., McDowell, D.: Distributions of stretch and rotation in OFHC Cu. J. Eng. Mater. Technol. 124, 302–313 (2002)

    Article  Google Scholar 

  42. Clayton, J., McDowell, D., Bammann, D.: A multiscale gradient theory for elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 42, 427–457 (2004)

    Article  MATH  Google Scholar 

  43. Clayton, J., Bammann, D., McDowell, D.: Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int. J. Non Linear Mech. 39, 1039–1049 (2004)

    Article  MATH  Google Scholar 

  44. Clayton, J., Bammann, D., McDowell, D.: A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)

    Article  ADS  Google Scholar 

  45. Clayton, J., McDowell, D., Bammann, D.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006)

    Article  MATH  Google Scholar 

  46. Clayton, J., Chung, P., Grinfeld, M., Nothwang, W.: Continuum modeling of charged vacancy migration in elastic dielectric solids, with application to perovskite thin films. Mech. Res. Commun. 35, 57–64 (2008)

    Article  MATH  Google Scholar 

  47. Clayton, J., Chung, P., Grinfeld, M., Nothwang, W.: Kinematics, electromechanics, and kinetics of dielectric and piezoelectric crystals with lattice defects. Int. J. Eng. Sci. 46, 10–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Clayton, J., Hartley, C., McDowell, D.: The missing term in the decomposition of finite deformation. Int. J. Plast. 52, 51–76 (2014)

    Article  Google Scholar 

  49. Clifton, R.: On the analysis of elastic visco-plastic waves of finite uniaxial strain. In: Burke, J., Weiss, V. (eds.) Shock Waves and the Mechanical Properties of Solids, pp. 73–116. Syracuse University Press, New York (1971)

    Google Scholar 

  50. Clifton, R., Markenscoff, X.: Elastic precursor decay and radiation from nonuniformly moving dislocations. J. Mech. Phys. Solids 29, 227–251 (1981)

    Article  MATH  ADS  Google Scholar 

  51. Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  52. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  53. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    MATH  Google Scholar 

  54. Eshelby, J.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Farren, W.: The heat developed during plastic extension of metals. Proc. R. Soc. Lond. A 107, 422–451 (1925)

    Article  ADS  Google Scholar 

  56. Foreman, A.: Dislocation energies in anisotropic crystals. Acta Metall. 3, 322–330 (1955)

    Article  Google Scholar 

  57. Godfrey, A., Cao, W., Liu, Q., Hansen, N.: Stored energy, microstructure, and flow stress of deformed metals. Metall. Mater. Trans. A 36, 2371–2378 (2005)

    Article  Google Scholar 

  58. Gray, G., Bourne, N., Millett, J.: Shock response of tantalum: lateral stress and shear strength through the front. J. Appl. Phys. 94, 6430–6436 (2003)

    Article  ADS  Google Scholar 

  59. Guinan, M., Steinberg, D.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Article  ADS  Google Scholar 

  60. Holder, J., Granato, A.: Thermodynamic properties of solids containing defects. Phys. Rev. 182, 729–741 (1969)

    Article  ADS  Google Scholar 

  61. Hull, D., Bacon, D.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (1984)

    Google Scholar 

  62. Johnson, J., Barker, L.: Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40, 4321–4334 (1969)

    Article  ADS  Google Scholar 

  63. Johnson, G., Cook, W.: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547. The Hague, Netherlands (1983)

    Google Scholar 

  64. Johnson, J., Jones, O., Michaels, T.: Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41, 2330–2339 (1970)

    Article  ADS  Google Scholar 

  65. Johnson, J., Hixson, R., Gray III, G., Morris, C.: Quasi-elastic release in shock-compressed solids. J. Appl. Phys. 72, 429–441 (1992)

    Article  ADS  Google Scholar 

  66. Kocks, U.: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1, 1121–1143 (1970)

    Article  ADS  Google Scholar 

  67. Kocks, U., Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)

    Article  Google Scholar 

  68. Kocks, U., Argon, A., Ashby, M.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–291 (1975)

    Article  Google Scholar 

  69. Kratochvil, J.: Finite-strain theory of inelastic behavior of crystalline solids. In: Sawczuk, A. (ed.) Foundations of Plasticity, pp. 401–415. Noordhoff, Leyden (1972)

    Google Scholar 

  70. Kr\(\ddot {\text{o}}\)ner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Google Scholar 

  71. Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Modeling single-crystal microstructure evolution due to shock loading. J. Phys. Conf. Ser. 500, 112040 (2014)

    Article  Google Scholar 

  72. Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Plane wave simulation of elastic-viscoplastic single crystals. J. Mech. Phys. Solids 69, 14–32 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  73. Lloyd, J., Clayton, J., Becker, R., McDowell, D.: Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plast. 60, 118–144 (2014)

    Article  Google Scholar 

  74. Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions. Adv. Model. Simul. Eng. Sci. 2, 14 (2015)

    Google Scholar 

  75. Lubarda, V.: New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals. J. Mech. Phys. Solids 45, 471–490 (1997)

    Article  MATH  ADS  Google Scholar 

  76. Lubarda, V.: Elastoplasticity Theory. CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  77. Luscher, D., Bronkhorst, C., Alleman, C., Addessio, F.: A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions. J. Mech. Phys. Solids 61, 1877–1894 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  78. Marsh, S. (ed.): LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  79. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs NJ (1983)

    MATH  Google Scholar 

  80. Maugin, G.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  81. McQueen, R., Marsh, S., Taylor, J., Fritz, J., Carter, W.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 294–417. Academic Press, New York (1970)

    Google Scholar 

  82. Millett, J., Whiteman, G., Bourne, N.: Lateral stress and shear strength behind the shock front in three face centered cubic metals. J. Appl. Phys. 105, 033515 (2009)

    Article  ADS  Google Scholar 

  83. Molinari, A., Ravichandran, G.: Fundamental structure of steady plastic shock waves in metals. J. Appl. Phys. 95, 1718–1732 (2004)

    Article  ADS  Google Scholar 

  84. Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  85. Preston, D., Tonks, D., Wallace, D.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211–220 (2003)

    Article  ADS  Google Scholar 

  86. Reed, B., Patterson, J., Swift, D., Stolken, J., Minich, R., Kumar, M.: A unified approach for extracting strength information from nonsimple compression waves. Part II. Experiment and comparison with simulation. J. Appl. Phys. 110, 113506 (2011)

    Google Scholar 

  87. Reed, B., Stolken, J., Minich, R., Kumar, M.: A unified approach for extracting strength information from nonsimple compression waves. Part I: Thermodynamics and numerical implementation. J. Appl. Phys. 110, 113505 (2011)

    Google Scholar 

  88. Regueiro, R., Bammann, D., Marin, E., Garikipati, K.: A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. 124, 380–387 (2002)

    Article  Google Scholar 

  89. Rice, J.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  ADS  Google Scholar 

  90. Rittel, D., Kidane, A., Alkhader, M., Venkert, A., Landau, P., Ravichandran, G.: On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper. Acta Mater. 60, 3719–3728 (2012)

    Article  Google Scholar 

  91. Rohatgi, A., Vecchio, K.: The variation of dislocation density as a function of the stacking fault energy in shock-deformed fcc materials. Mater. Sci. Eng. A 328, 256–266 (2002)

    Article  Google Scholar 

  92. Rosakis, P., Rosakis, A., Ravichandran, G., Hodowany, J.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  93. Scheidler, M., Wright, T.: A continuum framework for finite viscoplasticity. Int. J. Plast. 17, 1033–1085 (2001)

    Article  MATH  Google Scholar 

  94. Scheidler, M., Wright, T.: Classes of flow rules for finite viscoplasticity. Int. J. Plast. 19, 1119–1165 (2003)

    Article  MATH  Google Scholar 

  95. Seeger, A., Buck, O.: Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung. Zeitschrift fur Naturforschung A 15, 1056–1067 (1960)

    MATH  ADS  Google Scholar 

  96. Seeger, A., Haasen, P.: Density changes of crystals containing dislocations. Philos. Mag. 3, 470–475 (1958)

    Article  ADS  Google Scholar 

  97. Steinberg, D., Cochran, S., Guinan, M.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498–1504 (1980)

    Article  ADS  Google Scholar 

  98. Steinmann, P.: Geometrical Foundations of Continuum Mechanics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  99. Swegle, J., Grady, D.: Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58, 692–701 (1985)

    ADS  Google Scholar 

  100. Taylor, G.: Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)

    Google Scholar 

  101. Taylor, G., Quinney, H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A 143, 307–326 (1934)

    Article  ADS  Google Scholar 

  102. Thurston, R.: Effective elastic coefficients for wave propagation in crystals under stress. J. Acoust. Soc. Am. 37, 348–356 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  103. Thurston, R., Brugger, K.: Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 133, 1604–1612 (1964)

    Article  MATH  ADS  Google Scholar 

  104. Tonks, D.: The DataShoP: A database of weak-shock constitutive data. Tech. Rep. LA-12068, Los Alamos National Laboratory, Los Alamos, NM (1991)

    Google Scholar 

  105. Toupin, R., Rivlin, R.: Dimensional changes in crystals caused by dislocations. J. Math. Phys. 1, 8–15 (1960)

    MathSciNet  MATH  ADS  Google Scholar 

  106. Wallace, D.: Flow process of weak shocks in solids. Phys. Rev. B 22, 1487–1494 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  107. Wallace, D.: Irreversible thermodynamics of flow in solids. Phys. Rev. B 22, 1477–1486 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  108. Wallace, D.: Structure of shocks in solids and liquids. Tech. Rep. LA-12020, Los Alamos National Laboratory, Los Alamos, NM (1991)

    Google Scholar 

  109. Warnes, R., Tonks, D.: Measurement and analysis of 3-GPa shock wave profiles in annealed OFE copper. In: Schmidt, S., Johnson, J., Davison, L. (eds.) Shock Compression of Condensed Matter, pp. 329–332. Elsevier, Amsterdam (1989)

    Google Scholar 

  110. Wasserbach, W.: Third-order constants of a cubic quasi-isotropic solid. Phys. Status Solidi B 159, 689–697 (1990)

    Article  ADS  Google Scholar 

  111. Wright, T.: Stored energy and plastic volume change. Mech. Mater. 1, 185–187 (1982)

    Article  Google Scholar 

  112. Wright, T.: The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  113. Zerilli, F., Armstrong, R.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clayton, J.D. (2019). Shock Compression of Ductile Polycrystals. In: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-15330-4_8

Download citation

Publish with us

Policies and ethics