Skip to main content

Urban Data Acquisition Routing Approach for Vehicular Sensor Networks

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11204))

Included in the following conference series:

Abstract

Vehicular sensor networks have emerged as a new wireless sensor network paradigm that is envisioned to revolutionize the human driving experiences and traffic control systems. Like conventional sensor networks, they can sense events and process sensed data. Differently, vehicular sensors are equipped on vehicles such as taxies and buses. Thus, data acquisition is a hot issue which needs more attention when the routing protocols developed for conventional wireless sensor networks become unfeasible. In this paper, we propose a robust urban data acquisition routing approach, named Multi-hop Urban data Requesting and Dissemination (MURD) scheme. It consists of a base station, several static roadside replication nodes and many moving vehicles. They work together to realize the real-time data communications. The simulation results show that the proposed MURD is a flexible data acquisition routing approach which outperforms conventional approaches in terms of packet delivery ratio and data communication delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandan, A., Das, S., Pau, G., Gerla, M., Sanadidi, M.Y.: Co-operative downloading in vehicular ad-hoc wireless networks. In: Proceedings of IEEE WONS, St. Moritz, Switzerland, pp. 32–41, January 2005

    Google Scholar 

  2. Nandam, A., Tewari, S., Das, S., Pau, G., Gerla, M., Kleinrock, L.: Ad-Torrent: delivering location cognizant advertisements to car network. In: Proceedings of IFIP WONS, Les Menuires, France, January 2006

    Google Scholar 

  3. Xu, Q., Mak, T., Ko, J., Sengupta, R.: Vehicle-to-vehicle safety messaging in DSRC. In: Proceedings of ACM VANET, Philadelphia, PA, pp. 19–28, October 2004

    Google Scholar 

  4. Ott, J., Kutscher, D.: A disconnection-tolerant transport for driven internet environments. In: Proceedings of IEEE INFOCOM, Miami, FL, pp. 1849–1862, April 2005

    Google Scholar 

  5. Lee, U., Magistretti, E., Zhou, B., Gerla, M., Bellavista, P., Corradi, A.: Mobeyes: smart mobs for urban monitoring with a vehicular sensor network. IEEE Wirel. Commun. 13(5), 52–57 (2006)

    Article  Google Scholar 

  6. Akyildiz, F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40, 102 (2002)

    Article  Google Scholar 

  7. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking for smart dust. In: IEEE International Conference on Mobile Computing and Networking, pp. 270–278, August 1999

    Google Scholar 

  8. Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh. Technol. Mag. 2, 12–22 (2007)

    Article  Google Scholar 

  9. Lim, K.W., Jung, W.S., Ko, Y.-B.: Multi-hop data dissemination with replicas in vehicular sensor networks. In: VTC Spring 2008 IEEE Vehicular Technology Conference, pp. 3062–3066, May 2008

    Google Scholar 

  10. Kong, F., Tan, J.: A collaboration-based hybrid vehicular sensor network architecture. In: International Conference on Information and Automation, ICIA 2008, pp. 584–589, June 2008

    Google Scholar 

  11. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Trans. Commun. 32(3), 246 (1984)

    Article  Google Scholar 

  12. The Network Simulator – ns-2 (2010). http://www.isi.edu/nsnam/ns

  13. Perkin, C., Belding-Royer, E., Das, S.: Ad Hoc On-Demand Distance Vector (AODV) routing. IETF Experimental RFC, MANET Working Group, RFC 3562, July 2003

    Google Scholar 

  14. Lochert, C., Hartenstein, H., Tian, J., Herrmann, D., Mauve, M.: A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV2003), pp. 156–161, June 2003

    Google Scholar 

Download references

Acknowledgements

This research work is supported by the Fundamental Research Funds for the Central Universities under Grant 2019B22214, and supported in part by the National Natural Science Foundation of China under Grant 61801166; it was also supported by Changzhou Sci. and Tech. Program under Grant CJ20180046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, L., Dong, Z., Wang, Z., Cheng, Z., Su, X. (2019). Urban Data Acquisition Routing Approach for Vehicular Sensor Networks. In: Li, S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science(), vol 11204. Springer, Cham. https://doi.org/10.1007/978-3-030-15093-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15093-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15092-1

  • Online ISBN: 978-3-030-15093-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics