Skip to main content

On the Simulation of the Cyclic Mobility Effect with an ISA-Hypoplastic Model

  • Conference paper
  • First Online:
Desiderata Geotechnica

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The ISA-Hypoplasticity corresponds to an extended version of conventional Hypoplasticity to enable the simulation of some observed effects on cyclic loading. This extension offers novel features compared to the intergranular strain theory by Herle and Niemunis [4], including the incorporation of an elastic strain amplitude, to separate the elastic and plastic response, and the ability to reduce the plastic accumulation rate upon a larger number of cycles (\(N>10\)). In the present work, a modification to the ISA-hypoplastic model is described in order to enable the simulation of cyclic mobility effects exhibited by granular materials. The modification is based on a new state variable, able to detect paths at which the cyclic mobility effect is activated. With this information, some factors of the ISA-hypoplastic model are modified to deliver the proper response on paths showing cyclic mobility effects. Simulations examples are given to illustrate the new mechanism and a short analysis of the new parameters is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dafalias, Y., Manzari, M.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. ASCE 130(6), 622–634 (2004)

    Article  Google Scholar 

  2. Fuentes, W., Triantafyllidis, T.: ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int. J. Numer. Anal. Meth. Geomech. 39(11), 1235–1254 (2015)

    Article  Google Scholar 

  3. Mašín, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meth. Geomech. 29(4), 311–336 (2005)

    Article  Google Scholar 

  4. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-frictional Mater. 2(4), 279–299 (1997)

    Article  Google Scholar 

  5. Poblete, M., Fuentes, W., Triantafyllidis, T.: On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech. 11(6), 1263–1285 (2016)

    Article  Google Scholar 

  6. Pradhan, T., Tatsuoka, F., Sato, Y.: Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found. 29(1), 45–64 (1989)

    Article  Google Scholar 

  7. Weifner, T., Kolymbas, D.: A hypoplastic model for clay and sand. Acta Geotech. 2(2), 103–112 (2007)

    Article  Google Scholar 

  8. Wichtmann, T.: Karlsruhe fine sand data-base. Technical report, Institute of Soil and Rock Mechanics (IBF). Karlsruhe Institute of Technology (KIT) (2015). http://www.torsten-wichtmann.de

  9. Wolffersdorff, V.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-frictional Mater. 1(3), 251–271 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Fuentes .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Appendix 1 presents a summary of the constitutive equations of the ISA-hypoplastic model. Details of the equations below are found in [2, 5, 9].

(6)
$$\begin{aligned} \mathsf {M} = \left\{ \begin{array}{ll} [ m_{R} + (1-m_{R})y_{h} ] (\mathsf {L}^\mathrm{hyp} + \rho ^{\chi } \mathbf {N}^\mathrm{hyp}\otimes \mathbf {N}) &{} \text {for } F_H\ge 0\\ m_{R}\mathsf {L}^\mathrm{hyp} &{} \text {for } F_H < 0 \end{array} \right. \end{aligned}$$
(7)
(8)
$$\begin{aligned} \dot{\lambda }_H=\dfrac{\langle \mathbf {N}:\dot{\varepsilon }\rangle }{1-\left( \dfrac{\partial F_H}{\partial \mathbf {c}}\right) :\bar{\mathbf {c}}} \end{aligned}$$
(9)
(10)
$$\begin{aligned} \rho =1-\dfrac{\Vert \mathbf {h}_b-\mathbf {h}\Vert }{2R} ,\quad \text {with}\quad \mathbf {h}_b= R\mathbf {N}\end{aligned}$$
(11)
(12)
$$\begin{aligned} m=m_R+(1-m_R)y_h \end{aligned}$$
(13)
(14)
$$\begin{aligned} \chi = \chi _0+\varepsilon _\mathrm{acc}(\chi _\mathrm{max}-\chi _0) \end{aligned}$$
(15)

The set of parameters are R, \(\chi _0\), \(\chi _\mathrm{max}\), \(m_R\), \(\beta _0\), \(\beta _\mathrm{max}\) and \(C_a\).

Appendix 2

In the present appendix, the remaining equations of the reference hypoplastic model [9] are given:

$$\begin{aligned} {\mathsf{L}}^\mathrm{hyp}=f_bf_e\dfrac{1}{\hat{{\varvec{\sigma }}} :\hat{{\varvec{\sigma }}}} (F^2\mathsf{I}+a^2\hat{{\varvec{\sigma }}}\hat{{\varvec{\sigma }}}) \end{aligned}$$
(16)
$$\begin{aligned} {\mathbf {N}}^\mathrm{hyp}=f_df_bf_e\dfrac{Fa}{\hat{{\varvec{\sigma }}}:\hat{{\varvec{\sigma }}}}(\hat{{\varvec{\sigma }}}+\hat{{\varvec{\sigma }}}^\mathrm{dev}) \end{aligned}$$
(17)
(18)
$$\begin{aligned} F=\sqrt{\dfrac{1}{8}\tan ^2(\psi )+\dfrac{2-\tan ^2(\psi )}{2+2\sqrt{2}\tan (\psi )\cos (3\theta )}}-\dfrac{1}{2\sqrt{2}\tan (\psi )} \end{aligned}$$
(19)
(20)
(21)

The set of parameters are \(\varphi _c\), \(h_s\), \(n_B\), \(e_{i0}\), \(e_{c0}\), \(e_{d0}\), \(\alpha \) and \(\beta \).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuentes, W., Lascarro, C. (2019). On the Simulation of the Cyclic Mobility Effect with an ISA-Hypoplastic Model. In: Wu, W. (eds) Desiderata Geotechnica. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-14987-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14987-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14986-4

  • Online ISBN: 978-3-030-14987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics