Skip to main content

Essential Concepts of Neohypoplasticity

  • Conference paper
  • First Online:
Desiderata Geotechnica

Abstract

The neohypoplastic model [12] eliminates several shortcomings of the hypoplastic vW-HP model [17]. The most important improvements are presented here. The general form of the constitutive equation \(\dot{\sigma } = {\bar{\mathsf {E}}}:(\dot{\varepsilon } + \mathbf{m}Y \Vert \dot{\varepsilon }\Vert )\) is slightly modified by two additional terms in brackets. The functions \(\mathsf{E}(\sigma ,e), \mathbf{m}(\sigma ,e)\) and \(Y(\sigma ,e)\) are completely reformulated in order to deal with numerous problems of the old model: perpetuum mobile of the second kind, too small dilatancy during triaxial tension paths, poor predictions of peak stress and inconsistent behaviour of the model at the upper density limit. A new state variable \(\mathbf{z}\) similar to the one from the Sanisand model [3] is introduced. The hitherto used state variables: the stress and the void ratio are preserved, of course. Moreover, a new kind of nonlinearity is proposed: the rotation of the deviatoric stress response. The problems connected to the extension intergranular-strain extension are not discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We substitute \( \tau = \sigma \lambda \) into \(\bar{\psi }\) and then differentiate the equation \(\bar{\psi }(\tau ) = \lambda ^m \bar{\psi }(\sigma )\) twice with respect to \(\lambda \) using the chain rule on the left-hand side. The resulting equation \(\sigma : \displaystyle \frac{\partial ^2 \bar{\psi }(\tau )}{\partial \tau \partial \tau } : \sigma = m (m-1) \lambda ^{m-2} \bar{\psi }(\sigma )\) holds for any \( \lambda \). In particular, it holds for \( \lambda =1 \) and hence (2) can be concluded.

  2. 2.

    Given by the new state variable \(\mathbf{z}\) which decays upon cyclic loading.

  3. 3.

    The half-life of \(\mathbf{e}\) is \(\tau \ln ( 2 ) \).

  4. 4.

    Hunt et al. [8] showed that two velocity ranges, originally proposed by Bagnold, are not necessary.

  5. 5.

    These parameters are obtained from rough extrapolation of experiments on suspensions with very low density.

References

  1. Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend öodometrischer Beanspruchung. Ph.D. thesis, Institut für Boden und Felsmechanik der Universität Karlsruhe (TH), Heft, Nr. 130 (1992)

    Google Scholar 

  2. Di Benedetto, H., Tatsuoka, F., Ishihara, M.: Time dependent shear deformation characteristics of sand and their constitutive modelling. Soils Found. 42(2), 1–22 (2001)

    Google Scholar 

  3. Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130, 22–34 (2004)

    Google Scholar 

  4. Dafalias, Y.F.: Overview of constitutive models used in VELACS. In: Arulandan, K., Scott, R. (eds.) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, vol. 2, pp. 1293–1304. Balkema, Proceedings of the International Conference in Davis, California (1994)

    Google Scholar 

  5. Espino, E.: Quasi-statische Untersuchungen zur Elastizitt von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Masters thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie, Mai (2014)

    Google Scholar 

  6. Graham, J., Houlsby, G.T.: Anisotropic elsticity of a natural clay. Géotechnique 33(2), 165–180 (1983)

    Article  Google Scholar 

  7. Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. Ph.D. thesis, Institut füur Boden- und Felsmechanik der Universität Karlsruhe, Nr. 142 (1997)

    Google Scholar 

  8. Hunt, M.L., Zenit, R., Campbell, C.S., Brennen, C.E.: Revisiting the 1954 suspension experiments of R.A. Bagnold. J. Fluid Mech. 452, 1–24 (2002)

    Article  Google Scholar 

  9. Johnson, A.: A model for grain flow and debris flow. Technical report 96-728, U.S. Department of the Interior U.S. Geological Survey, Denver, Colorado (1996)

    Google Scholar 

  10. Knittel, L.J.: Fortgesetzte quasi-statische Untersuchungen zur Elastizitt von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Masters thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut fr Technologie, September 2014

    Google Scholar 

  11. Matsuoka, H., Nakai, T.: Stress-strain relationship of soil base on the SMP constitutive equations of soils. In: Murayama, S., Schofield, A.N. (eds.) Proceedings of the 9th International Conference On Soil Mechanics and Foundation Engineering, Speciality Session 9. Japanese Society of Soil Mechanics and Foundation Engineering, IX ICSMFE, Tokyo (1977)

    Google Scholar 

  12. Niemunis, A., Grandas-Tavera, C.E., Wichtmann, T.: Peak stress obliquity in drained and undrained sands. Simulations with neohypoplasticity. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, vol. 80, pp. 85–114. Springer, Heidelberg (2016)

    Google Scholar 

  13. Osinov, V.A., Chisopoulos, S., Grandas-Tavera, C.E.: Vibration-induced stress changes in saturated soil: a high cyclic problem. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, pp. 69–84. Springer, Heidelberg (2016)

    Google Scholar 

  14. Chisopoulos, S., Osinov, V.A., Triantafyllidis, T.: Dynamic problem for the deformation of sturated soil in the vicinity of a vibratin pile toe. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling, pp. 53–68. Springer, Heidelberg (2016)

    Google Scholar 

  15. Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Methods Geomech. 32(8), 915–948 (2008)

    Article  Google Scholar 

  16. Vermeer, P.: A five-constant model unifying well established concepts. In: Constitutive Relations for Soils, pp. 175–198. Balkema, Holland, Proceedings of the International Workshop in Grenoble (1982)

    Google Scholar 

  17. von Wolffersdorf, P.-A.: Verformungsprognosen für Stützkonstruktionen. Ph.D. thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Habilitationschrift, Heft Nr. 141 (1997)

    Google Scholar 

  18. von Wolffersdorf, P.-A.: Eine neue Version des erweiterten hypoplastischen Stoffgesetzes. Mech. Cohesive-Frictional Mater. 1, 251–271 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Niemunis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niemunis, A., Grandas Tavera, C.E. (2019). Essential Concepts of Neohypoplasticity. In: Wu, W. (eds) Desiderata Geotechnica. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-14987-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14987-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14986-4

  • Online ISBN: 978-3-030-14987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics