Skip to main content
  • 342 Accesses

Abstract

Cold temperatures have been used in medicine for several decades, mainly for therapeutic purposes in several fields. The underlining physic principle is the “Joule-Thomson” effect: it is a phenomenon in which the temperature of a real gas increases or decreases following, respectively, its compression or its expansion—as a result from a pressure difference—that is carried out without extracting a work. Different cryogenic gases have been used so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colella S, Ravaglia C, Tomassett S, Gurioli CH, Gurioli C, Poletti V. Cryotherapy: application in the airways. In: Diaz-Jimenez JP, Rodriguez AN, editors. Interventions in pulmonary medicine. Cham: Springer; 2018.

    Google Scholar 

  2. Maiwand MO. Cryotherapy for advanced carcinoma of the trachea and bronchi. Br Med J (Clin Res Ed). 1986;293(6540):181–2.

    Article  CAS  Google Scholar 

  3. DiBardino DM, Lanfranco AR, Haas AR. Bronchoscopic cryotherapy. Clinical applications of the cryoprobe, cryospray, and cryoadhesion. Ann Am Thorac Soc. 2016;13(8):1405–15.

    Article  Google Scholar 

  4. Hetzel J, Eberhardt R, Herth FJ, Petermann C, Reichle G, Freitag L, Dobbertin I, Franke KJ, Stanzel F, Beyer T, Möller P, Fritz P, Ott G, Schnabel PA, Kastendieck H, Lang W, Morresi-Hauf AT, Szyrach MN, Muche R, Shah PL, Babiak A, Hetzel M. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur Respir J. 2012;39(3):685–90.

    Article  CAS  Google Scholar 

  5. Poletti V, Casoni GL, Gurioli C, Ryu JH, Tomassetti S. Lung cryobiopsies: a paradigm shift in diagnostic bronchoscopy? Respirology. 2014;19(5):645–54.

    Article  Google Scholar 

  6. Griff S, Ammenwerth W, Schönfeld N, Bauer TT, Mairinger T, Blum TG, Kollmeier J, Grüning W. Morphometrical analysis of transbronchial cryobiopsies. Diagn Pathol. 2011;6:53.

    Article  Google Scholar 

  7. Poletti V, Hetzel J. Transbronchial cryobiopsy in diffuse parenchymal lung disease: need for procedural standardization. Respiration. 2015;90(4):275–8.

    Article  Google Scholar 

  8. Almeida LM, Lima B, Mota PC, Melo N, Magalhães A, Pereira JM, Moura CS, Guimarães S, Morais A. Learning curve for transbronchial lung cryobiopsy in diffuse lung disease. Rev Port Pneumol (2006). 2017. pii: S2173-5115(17)30148-3. https://doi.org/10.1016/j.rppnen.2017.09.005.

    Article  Google Scholar 

  9. Echevarria-Uraga JJ, Pérez-Izquierdo J, García-Garai N, Gómez-Jiménez E, Aramburu-Ojembarrena A, Tena-Tudanca L, Miguélez-Vidales JL, Capelastegui-Saiz A. Usefulness of an angioplasty balloon as selective bronchial blockade device after transbronchial cryobiopsy. Respirology. 2016;21(6):1094–9.

    Article  Google Scholar 

  10. Ravaglia C, Bonifazi M, Wells AU, Tomassetti S, Gurioli C, Piciucchi S, Dubini A, Tantalocco P, Sanna S, Negri E, Tramacere I, Ventura VA, Cavazza A, Rossi A, Chilosi M, La Vecchia C, Gasparini S, Poletti V. Safety and diagnostic yield of transbronchial lung cryobiopsy in diffuse parenchymal lung diseases: a comparative study versus video-assisted thoracoscopic lung biopsy and a systematic review of the literature. Respiration. 2016;91(3):215–27.

    Article  Google Scholar 

  11. Gershman E, Fruchter O, Benjamin F, Nader AR, Rosengarten D, Rusanov V, Fridel L, Kramer MR. Safety of cryo-transbronchial biopsy in diffuse lung diseases: analysis of three hundred cases. Respiration. 2015;90(1):40–6.

    Article  Google Scholar 

  12. Griff S, Schönfeld N, Ammenwerth W, Blum TG, Grah C, Bauer TT, Grüning W, Mairinger T, Wurps H. Diagnostic yield of transbronchial cryobiopsy in non-neoplastic lung disease: a retrospective case series. BMC Pulm Med. 2014;14:171.

    Article  Google Scholar 

  13. Casoni GL, Tomassetti S, Cavazza A, Colby TV, Dubini A, Ryu JH, Carretta E, Tantalocco P, Piciucchi S, Ravaglia C, Gurioli C, Romagnoli M, Gurioli C, Chilosi M, Poletti V. Transbronchial lung cryobiopsy in the diagnosis of fibrotic interstitial lung diseases. PLoS One. 2014;9(2):e86716.

    Article  Google Scholar 

  14. Seamans Y, et al. Effect of cough technique and cryogen gas on temperatures achieved during simulated cryotherapy. BMC Womens Health. 2007;7:16.

    Article  Google Scholar 

  15. Maiti H, Cheyne MF, Hobbs G, Jeraj HA. Cryotherapy gas—to use nitrous oxide or carbon dioxide? Int J STD AIDS. 1999;10(2):118–20.

    CAS  PubMed  Google Scholar 

  16. Mariategui J, Santos C, Taxa L, Jeronimo J, Castle PE. Comparison of depth of necrosis achieved by CO2- and N2O-cryotherapy. Int J Gynaecol Obstet. 2008;100(1):24–6.

    Article  CAS  Google Scholar 

  17. Hetzel J, Maldonado F, Ravaglia C, Wells AU, Colby TV, Tomassetti S, Ryu JH, Fruchter O, Piciucchi S, Dubini A, Cavazza A, Chilosi M, Sverzellati N, Valeyre D, Leduc D, Walsh SLF, Gasparini S, Hetzel M, Hagmeyer L, Haentschel M, Eberhardt R, Darwiche K, Yarmus LB, Torrego A, Krishna G, Shah PL, Annema JT, Herth FJF, Poletti V. Transbronchial cryobiopsies for the diagnosis of diffuse parenchymal lung diseases: expert statement from the cryobiopsy working group on safety and utility and a call for standardization of the procedure. Respiration. 2018;95(3):188–200.

    Article  Google Scholar 

  18. Franke KJ, Szyrach M, Nilius G, Hetzel J, Hetzel M, Ruehle KH, Enderle MD. Experimental study on biopsy sampling using new flexible cryoprobes: influence of activation time, probe size, tissue consistency, and contact pressure of the probe on the size of the biopsy specimen. Lung. 2009;187(4):253–9.

    Article  Google Scholar 

  19. Ing M, Oliver RA, Oliver BG, Walsh WR, Williamson JP. Evaluation of transbronchial lung cryobiopsy size and freezing time: a prognostic animal study. Respiration. 2016;92(1):34–9.

    Article  Google Scholar 

  20. Chua KJ, Chou SK, Ho JC. An analytical study on the thermal effects of cryosurgery on selective cell destruction. J Biomech. 2007;40(1):100–16.

    Article  CAS  Google Scholar 

  21. Mazur P, Leibo SP, Farrant J, Chu EHY, Hanna MG Jr, Smith LH. Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In: Wolstenholme GEW, O’Connor M, editors. Ciba foundation symposium on the frozen cell. London: J&A Churchill Publication; 1970. p. 69–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colella, S. (2019). Cryobiopsy: Physics. In: Poletti, V. (eds) Transbronchial cryobiopsy in diffuse parenchymal lung disease. Springer, Cham. https://doi.org/10.1007/978-3-030-14891-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14891-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14890-4

  • Online ISBN: 978-3-030-14891-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics