Skip to main content

Industrially Important Pigments from Different Groups of Fungi

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The worldwide tendency in the current era is to increase the use of natural pigments instead of synthetic ones. Relative to the toxic effects of synthetic pigments, natural pigments are easily degradable because they have no detrimental effects. So, alternative and effective environment eco-friendly sustainable technologies are highly needed. Fungi were recognized back in 1920. Because they have broad range of biological activities, fungi have been considered as a significant source of pigments. Among the fungal species in the soil, the genera Aspergillus, Fusarium, Penicillium, Paecilomyces, Epicoccum, Lecanicillium, Monascus, and Trichoderma are dominant for pigment production. The pigments commonly produced by fungi are such as arotenoids, melanins, quinones, flavins, ankaflavin, anthraquinone, naphthoquinone, and carotene. The use of fungal pigments has such benefits as easy and fast growth in inexpensive culture medium and different color shades, independent of weather conditions, and would be useful in various industrial applications. Pigments produced by soil fungi have tremendous use in medicines, textile coloring, food coloring, and cosmetics because of the important biological activities of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen AJ, Jensen SL (1965) Fungal carotenoids. II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand 19:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Asilonu E, Bucke C, Keshavarz T (2000) Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides. Biotechnol Lett 22:931–936

    Article  CAS  Google Scholar 

  • Atalla MM, El-Khrisy E, Youssef Y, Mohamed A (2011) Production of textile reddish brown dyes by fungi. Malays J Microbiol 7:33–40

    Google Scholar 

  • Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones—occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68

    Article  CAS  Google Scholar 

  • Bachmann O, Kemper B, Musso H (1986) The green pigment from the fungus Roesleria hypogea. Liebigs Annalen Der Chemie 1986:305–309

    Article  Google Scholar 

  • Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Prome D, Prome JC, Laussac JC, Goma G (1994) Pigments of Monascus. J Food Sci 59:862–865

    Article  CAS  Google Scholar 

  • Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466

    CAS  Google Scholar 

  • Brikinshaw JH, Kalyanpur MG, Stickings CE (1963) Studies in the biochemistry of microorganisms. 113. Pencolide a nitrogen containing metabolite of Penicillium multicolor Grigorieva-Manilova and Poradielova. Biochem J 86:237–243

    Article  Google Scholar 

  • Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193

    Article  CAS  PubMed Central  Google Scholar 

  • Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8:48–57

    Article  CAS  Google Scholar 

  • Chen G, Shi K, Song D, Quan L, Wu Z (2015) The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnol 15:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitale A, Jadhav DV, Waghmare SR, Sahoo AK, Ranveer RC (2012) Production and characterization of brown colored pigment from Trichoderma viride. Electron J Environ Agric Food Chem 11:529–537

    CAS  Google Scholar 

  • Cole RJ, Kirksey JW, Cutler HG, Davis EE (1974) Toxic effects of oosporein from Chaetomium trilaterale. J Agric Food Chem 22:517–520

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J (2011) The gene card encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J 278:3164–3176

    Article  CAS  PubMed  Google Scholar 

  • Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    CAS  Google Scholar 

  • Dufosse L (2009) Pigment, microbial. Appl Microbiol Ind 457–471

    Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16(9):389–406

    Article  CAS  Google Scholar 

  • Durán N, Teixeira MFS, Conti RD, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66

    Article  PubMed  Google Scholar 

  • European Commission (2000) Opinion of the Scientific Committee on food on beta-carotene from Blakeslea trispora (SCF/CS/ADD/COL), pp. 158

    Google Scholar 

  • Fabre CE, Santerre AL, Loret MO, Baberian R, Paresllerin A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1110

    Article  CAS  Google Scholar 

  • Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  • Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One 8(12):84102

    Article  CAS  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99

    Article  CAS  Google Scholar 

  • Gribanovski-Sassu O, Foppen FH (1967) The carotenoids of the fungus Epicoccum nigrum link. Phytochemistry 6:907–909

    Article  CAS  Google Scholar 

  • Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7:1894–1898

    Article  CAS  Google Scholar 

  • Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200

    Article  CAS  Google Scholar 

  • Hamano PS, Kilikian BV (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Braz J Chem Eng 23:443–449

    Article  CAS  Google Scholar 

  • Hinsch EM, Chen HL, Weber G, Robinson SC (2015) Colorfastness of extracted wood-staining fungal pigments on fabrics: a new potential of textile dyes. J Textile Apparel Technol Manag 9:1–11

    Google Scholar 

  • Hobson DK, Wales DS (1998) Green dyes. J Stud Dyn Change 114:42–44

    CAS  Google Scholar 

  • Huang H, Feng X, Xiao Z, Liu L, Li H, Ma L, Lu Y, Ju J, She Z, Lin Y (2011) Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J Nat Prod 74:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Hohn TM, Leathers TD (2004) Genetically modified strains of Fusarium sporotrichioides for production of lycopene and β-carotene. Society of Industrial Microbiol Annual Meeting, San Diego, USA

    Google Scholar 

  • Khiabani MS, Esfahani ZH, Azizi MH, Sahari MA (2011) Effective factors on stimulate and stability of synthesised carotenoid by Neurospora intermedia. Nutr Food Sci 41:89–95

    Article  Google Scholar 

  • Kim CH, Kim SW, Hong SI (1999) An integrated fermentation separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35:485–490

    Article  Google Scholar 

  • Kogl F, Van Wessem GC (1944) Analysis concerning pigments of fungi XIV. Concerning oosporein, the pigment of Oospora colorans van Beyma. Recl Trav Chim Pays Bas Bel 63:5–24

    Article  CAS  Google Scholar 

  • Kumar A, Verma U, Sharma U (2012) Antibacterial activity Monascus purpureus (red pigment) isolated from rice malt. Asian J Biol Life Sci 1:252–255

    Google Scholar 

  • Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:1–11

    Article  CAS  Google Scholar 

  • Lampila LE, Wallen SE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80

    Article  CAS  PubMed  Google Scholar 

  • Lauro GJ (1991) A primer on natural colors. Cereal Foods World 36:949–953

    CAS  Google Scholar 

  • Li F, Xue F, Yu X (2017) GC-MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Curr Microbiol 74:532–539

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lu Y, Wu T, Pan Y (2008) Simultaneous isolation and purification of mollugin and two anthraquinones from Rubia cordifolia by HSCCC. Chromatographia 68:95–99

    Article  CAS  Google Scholar 

  • Liu Q, Xie N, He Y, Wang L, Shao Y, Chen F (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296

    Article  CAS  PubMed  Google Scholar 

  • Lopes FC, Tichota DM, Pereira JQ, Segalin J, de Oliveira RA, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625

    Article  CAS  PubMed  Google Scholar 

  • Lucas EMF, Monteirode Castro MC, Takashi JA (2007) Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazalian Cerrado isolate of Penicillium sclerotiorum van Beyma. Braz J Microbiol 38:785–789

    Article  Google Scholar 

  • Luo Z, Li Y, Mousa J, Bruner S, Zhang Y, Pei Y, Keyhani NO (2015) Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 17:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez RJ, Ruger-Herreros C, Tagua VG, Corrochano LM (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 7:33658

    Article  CAS  Google Scholar 

  • Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9:5955–5961

    CAS  Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2008) Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol Lett 30:2183–2190

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories 8:24

    Article  CAS  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307

    Article  CAS  PubMed  Google Scholar 

  • Margalith P (1992) Enhancement of carotenoids synthesis by fungal metabolites. Appl Microbiol Biotechnol 38:664–666

    Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    Article  CAS  Google Scholar 

  • Mehrabian S, Majd A, Majd I (2000) Antimicrobial effects of three plants (Rubia tinctorum, Carthamus tinctorius and Juglans regia) on some airborne microorganisms. Aerobiologia 16:455–458

    Article  Google Scholar 

  • Mendentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959

    Article  Google Scholar 

  • Mendez A, Perez C, Montaez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B (Biomed Biotechnol) 12:961–968

    Article  CAS  Google Scholar 

  • Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micetich RG, Macdonald JC (1965) Biosynthesis of neoaspergillic and neohydroxyaspergillic acids. J Biol Chem 240:1692–1695

    CAS  PubMed  Google Scholar 

  • Moharram AM, Eman MM, Ismail MA (2012) Chemical profile of Monascus ruber strains. Food Technol Biotechnol 50:490–499

    CAS  Google Scholar 

  • Mostafa ME, Abbady MS (2014) Secondary metabolite and bioactivity of the Monascus pigments: review articles. Global J Biotechnol Biochem 9:1–13

    CAS  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein, vell. Appl Environ Microbiol 76:2345–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaoka T, Nakata K, Kouno K (2004) Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Z Naturforsch C 59:302–304

    Article  CAS  PubMed  Google Scholar 

  • Nagia FA, El-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigments 75:550–555

    Article  CAS  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  CAS  PubMed  Google Scholar 

  • Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3:2255–2266

    Article  CAS  Google Scholar 

  • Pisareva E, Savov V, Kujumdzieva V (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z Naturforsch C 60:116–120

    Article  CAS  PubMed  Google Scholar 

  • Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathy R (2013) Natural dye production from Thermomyces sp. fungi for textile application. Indian J Fiber Text Res 38:276–279

    CAS  Google Scholar 

  • Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535

    CAS  Google Scholar 

  • Premalatha B, Pradeep FS, Pradeep BV, Palaniswamy M (2012) Production and characterization of naphthoquinone pigment from Fusarium moniliforme MTCC6985. World J Pharm Res 1:1126–1142

    CAS  Google Scholar 

  • Radzio R, Kück U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Process Biochem 32:529–539

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research. Springer, Switzerland. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2018b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

    Google Scholar 

  • Rasmussen RR, Rasmussen PH, Larsen TO, Bladt TT, Binderup ML (2011) Food Chem Toxicol 49:31

    Article  CAS  PubMed  Google Scholar 

  • Ray AC, Eakin RE (1975) Studies on the biosynthesis of aspergillin by Aspergillus niger. Appl Microbiol 30:909–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaki H, Nakanishi T, Satonaka KY, Miki W, Fujita T, Komemushi S (2000) Properties of a high-torularhodin mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205

    Article  CAS  PubMed  Google Scholar 

  • Santos MA, Mateos L, Stahmann KP, Revuelta JL (2005) Insertional mutagenesis in the vitamin B2 producer fungus Ashbya gossypii. In: Barredo JL (ed) Methods in biotechnology: microbial processes and products, vol 18. Humana Press, Totowa, pp 283–300

    Chapter  Google Scholar 

  • Schuster A, Schmoll M (2012) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  Google Scholar 

  • Sewekow U (1988) Natural dyes—an alternative to synthetic dyes. Melliand Textilber 69:145–148

    Google Scholar 

  • Seyedin A, Yazdian F, Hatamian ZA, Rasekh B, Mir DM (2015) Natural pigment production by Monascus purpureus: improving the yield in a bioreactor based on statistical analysis. Appl Food Biotechnol 2:23–30

    CAS  Google Scholar 

  • Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigments extraction from fungus for textile dyeing. Indian J Fiber Text Res 37:68–73

    CAS  Google Scholar 

  • Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP (1997) Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev Response Element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7:2295–2298

    Article  CAS  Google Scholar 

  • Singgih M, Andriatna W, Damayanti S, Priatni S (2005) Carotenogenesis study of Neurospora intermedia N-1 in liquid. J Chem Pharm Res 7:842–847

    Google Scholar 

  • Smith H, Doyle S, Murphy R (2015) Filamentous fungi as a source of natural antioxidants. Food Chem 185:389–397

    Article  CAS  PubMed  Google Scholar 

  • Soptica F, Bahrim G (2005) Influence of light upon flavonoid yields in Epicoccum nigrum solid state fermentation. Rom Biotechnol Lett 10:2387–2394

    CAS  Google Scholar 

  • Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimaraes LH, Santos C, Galvao LR, Cardoso PG (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22

    Article  CAS  Google Scholar 

  • Srianta I, Ristiarini S, NugerahaniI SSK, Zhang BB, Xu GR, Blanc PJ (2014) Recent research and development of Monascus fermentation products. Int Food Res J 21:1–12

    CAS  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida fomata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  PubMed  Google Scholar 

  • Sudha, Gupta C, Aggarwal S (2014) Novel bio-colorants for textile application from fungi. J Textile Assoc 74(5): 282–287

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sun S, Zhang X, Sun S, Zhu H (2016) Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem 190:801–817

    Article  CAS  PubMed  Google Scholar 

  • Sweeny JG, Estrda-Valdes MC, Iacobucci GA, Sato H, Sakamura S (1981) Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J Agric Food Chem 29:1189–1193

    Article  CAS  Google Scholar 

  • Takahashi JA, Carvalho SA (2010) Nutritional potential of biomass metabolites from filamentous fungi. Curr Res Edu Topics Appl Microbiol Microbial Biotechnol 1126–1135

    Google Scholar 

  • Teixeira MFS, Martins MS, Da Silva J, Kirsch LS, Fernandes OCC, Carneiro ALB, De Conti R, Duran N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium – characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311

    CAS  Google Scholar 

  • Torres FAE, Zaccarim BR, de Lencastre NLC, Jozala AF, Dos Santos CA, Teixeira MFS, Santos-Ebinuma VC (2016) Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 100(6):2511–2521

    Article  CAS  PubMed  Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2014) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biotechnol 32:135–140

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan P, Chae JC, Lakshmanaperumalsamy P, Yun BS, Lee KJ, Oh BT (2009) Assessment of the dyeing properties of pigments from five fungi and anti-bacterial activity of dyed cotton fabric and leather. Color Technol 125:334–341

    Article  CAS  Google Scholar 

  • Velmurugan P, Kamala Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial application and dyeing of leather. Carbohydr Polym 79:262–268

    Article  CAS  Google Scholar 

  • Vendruscolo F, Muler BL, Moritz DE, De Oliveira D, Smidell G, Ninon JL (2013) Thermal stability of natural pigments produced by Monascus ruber in submerged fermentation. Biocatal Agric Biotechnol 2:278–284

    Article  Google Scholar 

  • Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5:49–61

    Google Scholar 

  • Wang TH, Lin TF (2007) Monascus rice products. Adv Food Nutr Res 53:123–159

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52:6977–6982

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Chen HL, Hinsch E, Freitasa S, Robinson S (2014) Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Color Technol 130:445–452

    Article  CAS  Google Scholar 

  • Xu MJ, Yang ZL, Liang ZZ, Zhou SN (2009) Construction of a Monascus purpureus mutant showing lower citrinin and higher production by replacement of ctnA with pks1 without using vector and resistance gene. J Agric Food Chem 57:9764–9768

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:1–5

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29:39–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare R, Gams W (2001) A revision of verticillum section prostrata, IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

    Google Scholar 

  • Zhang YQ, Brock M, Keller NP (2004) Connection of propioyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 168:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Cai Y, Zhou L, Huang P, Ren X, Zuo A (2017) Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling. Int J Mol Med 39:39–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Professor Saket Kushwaha, Vice Chancellor, Rajiv Gandhi University, Itanagar, and Arunachal Pradesh, formerly Professor In-Charge, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India, for all necessary facilities, valuable suggestions, and cooperation during the course of this investigation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Prajapati, S., Nikhil, Nandan, S., Neogi, T.G. (2019). Industrially Important Pigments from Different Groups of Fungi. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_10

Download citation

Publish with us

Policies and ethics