Skip to main content

Predicting Cardiovascular Risk Level Based on Biochemical Risk Factor Indicators Using Machine Learning: A Case Study in Indonesia

  • Conference paper
  • First Online:
  • 1941 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11432))

Abstract

Early detection of cardiovascular risk level remains an important issue in healthcare. It is still considered a very important preventive measure of cardiovascular disease as it gives a significant impact to reducing mortality rates and cardiovascular events. Prior to developing a prediction model of cardiovascular risk, identification of dominant predictor variables is very crucial. Some prominent studies have proposed a vast number of predictor variables. Although some predictor variables might be universal in nature, as the premise of this study, some of the variables might be associated with local lifestyle that governs patient behavior. This paper presents a verificative study on previous studies predicting cardiovascular risk level by using Indonesian adult patients’ lab records as the input dataset. In relation to this objective, this study aimed to select dominant biochemical indicators as predictor variables and trained machine learning models as classifier. Finally, this study compared the performance of several prominent classifier models such as: XGBoost, Random Forest, k-NN, Gradient Boosting, Artificial Neural Network (Multilayer Perceptron), Decision Tree, and Ada Boost. The results show that: XGBoost model achieved the best training and testing accuracy (0.965 and 0.964) compared to Random Forest (0.964 and 0.962), 5-NN (0.952 and 0.948), Gradient Boosting (0.948 and 0.940), Artificial Neural Networks (0.945 and 0.933), Decision Tree (0.861 and 0.860) and Ada Boost models (0.748 and 0.718).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rovio, S.P., et al.: Cardiovascular risk factors from childhood and midlife cognitive performance: the Young Finns Study. J. Am. Coll. Cardiol. 69(18), 2279–2289 (2017)

    Article  Google Scholar 

  2. Hansson, G.K., Hermansson, A.: The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011)

    Article  Google Scholar 

  3. WHO. http://www.who.int/cardiovascular_diseases/en/. Accessed 26 Oct 2017

  4. Friedewald, W.T., Levy, R.I., Fredrickson, D.S.: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6), 499–502 (1972)

    Google Scholar 

  5. Rovio, S.P., et al.: Cognitive performance in young adulthood and midlife: relations with age, sex, and education—the cardiovascular risk in Young Finns Study. Neuropsychology 30(5), 532 (2016)

    Article  Google Scholar 

  6. Cohn, J.N., Duprez, D.A., Hoke, L., Florea, N., Duval, S.: Office blood pressure and cardiovascular disease: pathophysiologic implications for diagnosis and treatment. Hypertension 69(5), e14–e20 (2017)

    Article  Google Scholar 

  7. Welham, S.: Longitudinal data analysis. In: Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G. (eds.) Longitudinal Data Analysis, pp. 253–289. Chapman & Hall/CRC, Boca Raton (2009)

    Google Scholar 

  8. Sweeting, M.J., Barrett, J.K., Thompson, S.G., Wood, A.M.: The use of repeated blood pressure measures for cardiovascular risk prediction: a comparison of statistical models in the ARIC study. Stat. Med. 36(28), 4514–4528 (2017)

    Article  MathSciNet  Google Scholar 

  9. Patsch, J.R., et al.: Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis and thrombosis. J. Vasc. Biol. 12(11), 1336–1345 (1992)

    Google Scholar 

  10. Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N.: Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4), e017494 (2017)

    Article  Google Scholar 

  11. Kannel, W.B., McGee, D.D., Gordon, T.: A general cardiovascular risk profile: the Framingham study. Am. J. Cardiol. 38(1), 46–51 (1976)

    Article  Google Scholar 

  12. Plekhova, N.G., et al.: Scale of binary variables for predicting cardiovascular risk scale for predicting cardiovascular risk. In: 2018 3rd IEEE Russian-Pacific Conference on Computer Technology and Applications (RPC), pp. 1–4 (2018)

    Google Scholar 

  13. Peters, S.A., Woodward, M., Rumley, A., Tunstall-Pedoe, H.D., Lowe, G.D.: Plasma and blood viscosity in the prediction of cardiovascular disease and mortality in the Scottish Heart Health Extended Cohort study. Eur. J. Prevent. Cardiol. 24(2), 161–167 (2017)

    Article  Google Scholar 

  14. Muntner, P., Whelton, P.K.: Using predicted cardiovascular disease risk in conjunction with blood pressure to guide antihypertensive medication treatment. J. Am. Coll. Cardiol. 69(19), 2446–2456 (2017)

    Article  Google Scholar 

  15. Marcovina, S.M., et al.: Biochemical and bioimaging markers for risk assessment and diagnosis in major cardiovascular diseases: a road to integration of complementary diagnostic tools. J. Intern. Med. 261(3), 214–234 (2007)

    Article  Google Scholar 

  16. Miao, C., et al.: Cardiovascular health score and the risk of cardiovascular diseases. PLoS ONE 10(7), e0131537 (2015)

    Article  Google Scholar 

  17. Sun, X., Jia, Z.: A brief review of biomarkers for preventing and treating cardiovascular diseases. J. Cardiovasc. Dis. Res. 3, 251 (2012)

    Article  Google Scholar 

  18. Heryadi, Y., Miranda, E., Warnars, H.L.H.S.: Learning decision rules from incomplete biochemical risk factor indicators to predict cardiovascular risk level for adult patients. In: Proceedings of 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Puket, Thailand (2017)

    Google Scholar 

  19. Miranda, E., Irwansyah, E., Amelga, A.Y., Maribondang, M.M., Salim, M.: Detection of cardiovascular disease risk’s level for adults using Naive Bayes classifier. Healthc. Inform. Res. 22(3), 196–205 (2016)

    Article  Google Scholar 

  20. Juarez-Orozco, L.E., Knol, R.J.J., Sanchez-Catasus, C.A., Van Der Zant, F.M., Knuuti, J.: Improving the value of clinical variables in the assessment of cardiovascular risk using artificial neural networks. Eur. Heart J. 38(suppl_1), 227–228 (2017)

    Google Scholar 

  21. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Hoboken (1984)

    MATH  Google Scholar 

  22. Geurts, P., Irrthum, A., Wehenkel, L.: Supervised learning with decision tree-based methods in computational and systems biology. Mol. BioSyst. 5(12), 1593–1605 (2009)

    Article  Google Scholar 

  23. Aertsen, W., Kint, V., van Orshoven, J., Özkan, K., Muys, B.: Comparison and ranking of different modelling techniques for prediction of site index in mediterranean mountain forests. Ecol. Model. 221, 1119–1130 (2010)

    Article  Google Scholar 

  24. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2016)

    Google Scholar 

  25. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  26. Bennett, J., Lanning, S.: The Netflix prize. In: Proceedings of the KDD Cup Workshop 2007, New York, pp. 3–6 (2007)

    Google Scholar 

  27. Burges, C.: From ranknet to lambdarank to lambdamart: an overview. Learning 11, 23–581 (2010)

    Google Scholar 

  28. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD 2014 (2014)

    Google Scholar 

  29. Li, P.: Robust Logitboost and adaptive base class (ABC) Logitboost. In: Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), pp. 302–311 (2010)

    Google Scholar 

  30. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  31. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119 (1997)

    Article  MathSciNet  Google Scholar 

  32. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  33. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaya Heryadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heryadi, Y., Kosala, R., Bahana, R., Suteja, I. (2019). Predicting Cardiovascular Risk Level Based on Biochemical Risk Factor Indicators Using Machine Learning: A Case Study in Indonesia. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11432. Springer, Cham. https://doi.org/10.1007/978-3-030-14802-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14802-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14801-0

  • Online ISBN: 978-3-030-14802-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics