Skip to main content

Establishment, Erasure and Synthetic Reprogramming of DNA Methylation in Mammalian Cells

  • Chapter
  • First Online:
  • 1122 Accesses

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

DNA methylation is a crucial epigenetic modification involved in the control of cellular function and the balance between generation of DNA methylation and its removal is important for human health. This chapter focuses on the enzymatic machinery responsible for the processes of establishment, maintenance and removal of DNA methylation patterns in mammals. We describe the biochemical, structural and enzymatic properties of DNA methyltransferases and TET DNA hydroxylases, as well as their regulation in cells. We discuss how these enzymes are recruited to specific genomic loci, and how their chromatin interactions, as well as their intrinsic sequence specificities and molecular mechanisms contribute to the methylation pattern of the cell. Finally, we introduce the concept of epigenetic (re)programming, in which designer epigenetic editing tools consisting of a DNA targeting domain fused to an epigenetic editor domain can be used to edit the epigenetic state of a given locus in the genome in order to dissect the functional role of DNA methylation and demethylation. We discuss the promises of this emerging technology for studying epigenetic processes in cells and for engineering of cellular states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amabile A, Migliara A, Capasso P et al (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232, e214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arita K, Ariyoshi M, Tochio H et al (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821

    Article  CAS  PubMed  Google Scholar 

  • Barau J, Teissandier A, Zamudio N et al (2016) The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354:909–912

    Article  CAS  PubMed  Google Scholar 

  • Basanta-Sanchez M, Wang R, Liu Z et al (2017) TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA. Chembiochem 18:72–76

    Article  CAS  PubMed  Google Scholar 

  • Bashtrykov P, Jankevicius G, Smarandache A et al (2012) Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol 19:572–578

    Article  CAS  PubMed  Google Scholar 

  • Bashtrykov P, Jankevicius G, Jurkowska RZ et al (2014) The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J Biol Chem 289:4106–4115

    Article  CAS  PubMed  Google Scholar 

  • Baubec T, Colombo DF, Wirbelauer C et al (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:243–247

    Article  CAS  PubMed  Google Scholar 

  • Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Smith GD, Greally JM (2016) Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genet 12:e1006105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovic O, Lister R (2017) DNA methylation and the preservation of cell identity. Curr Opin Genet Dev 46:9–14

    Article  CAS  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    Article  CAS  PubMed  Google Scholar 

  • Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Chen Y, Bian C et al (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–564

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa Y, Ding J, Theunissen TW et al (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495:370–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford DJ, Liu MY, Nabel CS et al (2016) Tet2 catalyzes stepwise 5-methylcytosine oxidation by an iterative and de novo mechanism. J Am Chem Soc 138:730–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delatte B, Wang F, Ngoc LV et al (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–285

    Article  CAS  PubMed  Google Scholar 

  • DeNizio JE, Liu MY, Leddin E et al (2018) Selectivity and promiscuity in TET-mediated oxidation of 5-methylcytosine in DNA and RNA. Biochemistry. https://doi.org/10.1021/acs.biochem.8b00912

    Article  PubMed  CAS  Google Scholar 

  • Dhayalan A, Rajavelu A, Rathert P et al (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285:26114–26120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwell TL, McGuffin LJ, Dunwell JM et al (2013) The mysterious presence of a 5-methylcytosine oxidase in the Drosophila genome: possible explanations. Cell Cycle 12:3357–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Jeong S, Escobar SG et al (2006) Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc Natl Acad Sci U S A 103:14080–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emperle M, Rajavelu A, Reinhardt R et al (2014) Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase. J Biol Chem 289:29602–29613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Guerrero CR, Zhong N et al (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136:11582–11585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galonska C, Charlton J, Mattei AL et al (2018) Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun 9:597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gowher H, Jeltsch A (2001) Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol 309:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 277:20409–20414

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2018) Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 46:1191–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowher H, Liebert K, Hermann A et al (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341–13348

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Loutchanwoot P, Vorobjeva O et al (2006) Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 357:928–941

    Article  CAS  PubMed  Google Scholar 

  • Goyal R, Reinhardt R, Jeltsch A (2006) Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34:1182–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Li X, Liang D et al (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–459

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wang L, Li J et al (2015) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644

    Article  CAS  PubMed  Google Scholar 

  • Hajkova P, Erhardt S, Lane N et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  CAS  PubMed  Google Scholar 

  • Handa V, Jeltsch A (2005) Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J Mol Biol 348:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Harrison JS, Cornett EM, Goldfarb D et al (2016) Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. elife 5:e17101

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Horton JR, Zhang X et al (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausinger RP, Schofield CJ (2015) 2-oxoglutarate-dependent oxygenases. RSC metallobiology, vol 3. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • He Y, Ecker JR (2015) Non-CG methylation in the human genome. Annu Rev Genomics Hum Genet 16:55–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Hodges E, Smith AD, Kendall J et al (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 19:1593–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Li Z, Cheng J et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Lu J, Cheng J et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Su J, Lei Y et al (2017) DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iida T, Suetake I, Tajima S et al (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Tahiliani M, Rao A et al (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710

    Article  CAS  PubMed  Google Scholar 

  • Jang HS, Shin WJ, Lee JE et al (2017) CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel) 8(6). pii: E148

    Google Scholar 

  • Jeltsch A, Jurkowska RZ (2013) Multimerization of the dnmt3a DNA methyltransferase and its functional implications. Prog Mol Biol Transl Sci 117:445–464

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39:310–318

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch A, Jurkowska RZ (2016) Allosteric control of mammalian DNA methyltransferases – a new regulatory paradigm. Nucleic Acids Res 44:8556–8575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin SG, Zhang ZM, Dunwell TL et al (2016) Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkowska RZ, Jeltsch A (2016) Enzymology of mammalian DNA methyltransferases. Adv Exp Med Biol 945:87–122

    Article  CAS  PubMed  Google Scholar 

  • Jurkowska RZ, Anspach N, Urbanke C et al (2008) Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res 36:6656–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkowska RZ, Jurkowski TP, Jeltsch A (2011a) Structure and function of mammalian DNA methyltransferases. Chembiochem 12:206–222

    Article  CAS  PubMed  Google Scholar 

  • Jurkowska RZ, Siddique AN, Jurkowski TP et al (2011b) Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase. Chembiochem 12:1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Jurkowski TP, Anspach N, Kulishova L et al (2007) The M.EcoRV DNA-(adenine N6)-methyltransferase uses DNA bending for recognition of an expanded EcoDam recognition site. J Biol Chem 282:36942–36952

    Article  CAS  PubMed  Google Scholar 

  • Jurkowski TP, Ravichandran M, Stepper P (2015) Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin Epigenetics 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinde B, Gabel HW, Gilbert CS et al (2015) Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci U S A 112:6800–6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimasauskas S, Kumar S, Roberts RJ et al (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  PubMed  Google Scholar 

  • Koch A, Joosten SC, Feng Z et al (2018) Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15:459–466

    Article  CAS  PubMed  Google Scholar 

  • Kolasinska-Zwierz P, Down T, Latorre I et al (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kungulovski G, Nunna S, Thomas M et al (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau CH, Suh Y (2018) In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 27:489–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Zhang X, Su J et al (2017) Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun 8:16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Huang YH, Goodell MA (2018) DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biol 19:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li BZ, Huang Z, Cui QY et al (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21:1172–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Liu Y, Xu F et al (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. GigaScience 7:1–19

    PubMed  Google Scholar 

  • Little EJ, Babic AC, Horton NC (2008) Early interrogation and recognition of DNA sequence by indirect readout. Structure 16:1828–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247 e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MY, Torabifard H, Crawford DJ et al (2017) Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Nat Chem Biol 13:181–187

    Article  CAS  PubMed  Google Scholar 

  • Liu XS, Wu H, Krzisch M et al (2018) Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–992 e976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinowich K, Hattori D, Wu H et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  CAS  PubMed  Google Scholar 

  • Mayer W, Niveleau A, Walter J et al (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  CAS  PubMed  Google Scholar 

  • McDonald JI, Celik H, Rois LE et al (2016) Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 5:866–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Morselli M, Pastor WA, Montanini B et al (2015) In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. elife 4:e06205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller U, Bauer C, Siegl M et al (2014) TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res 42:8592–8604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nady N, Lemak A, Walker JR et al (2011) Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 286:24300–24311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri F, Rapelli S, Krepelova A et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Yamaguchi L, Sharif J et al (2013) Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502:249–253

    Article  CAS  PubMed  Google Scholar 

  • Noh KM, Wang H, Kim HR et al (2015) Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape and phenotypic features of mouse ESCs. Mol Cell 59:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norvil AB, Petell CJ, Alabdi L et al (2018) Dnmt3b methylates DNA by a noncooperative mechanism, and its activity is unaffected by manipulations at the predicted dimer interface. Biochemistry 57:4312–4324

    Article  CAS  PubMed  Google Scholar 

  • Nunna S, Reinhardt R, Ragozin S et al (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 9:e87703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oswald J, Engemann S, Lane N et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  CAS  PubMed  Google Scholar 

  • Otani J, Nankumo T, Arita K et al (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  • Parrilla-Doblas JT, Ariza RR, Roldan-Arjona T (2017) Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics 12:296–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Perera A, Eisen D, Wagner M et al (2015) TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep 11:283–294

    Article  CAS  PubMed  Google Scholar 

  • Petell CJ, Alabdi L, He M et al (2016) An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res 44:7605–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffeneder T, Spada F, Wagner M et al (2014) Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10:574–581

    Article  CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Wolf P, Liu N et al (2015) DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res 25:911–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Sawada K, Zhang X et al (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9:217–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajavelu A, Lungu C, Emperle M et al (2018) Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 46:9044–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsahoye BH, Biniszkiewicz D, Lyko F et al (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran M, Jurkowska RZ, Jurkowski TP (2018) Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 16:1419–1435

    Article  CAS  PubMed  Google Scholar 

  • Rondelet G, Dal Maso T, Willems L et al (2016) Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 194:357–367

    Article  CAS  PubMed  Google Scholar 

  • Rothbart SB, Krajewski K, Nady N et al (2012) Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19:1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunderson EA, Stepper P, Gomm JJ et al (2017) Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat Commun 8:1450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholze H, Boch J (2010) TAL effector-DNA specificity. Virulence 1:428–432

    Article  PubMed  Google Scholar 

  • Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  CAS  PubMed  Google Scholar 

  • Serandour AA, Avner S, Mahe EA et al (2016) Single-CpG resolution mapping of 5-hydroxymethylcytosine by chemical labeling and exonuclease digestion identifies evolutionarily unconserved CpGs as TET targets. Genome Biol 17:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  • Siddique AN, Nunna S, Rajavelu A et al (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  • Song J, Teplova M, Ishibe-Murakami S et al (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335:709–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepper P, Kungulovski G, Jurkowska RZ et al (2017) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Stolzenburg S, Rots MG, Beltran AS et al (2012) Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 40:6725–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroynowska-Czerwinska A, Piasecka A, Bochtler M (2018) Specificity of MLL1 and TET3 CXXC domains towards naturally occurring cytosine modifications. Biochim Biophys Acta Gene Regul Mech 1861:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe JS, Nelson DL, Zhang F et al (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1:397–400

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Shimizu Y, Furuhata E et al (2017) RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 1:1699–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamanaha E, Guan S, Marks K et al (2016) Distributive processing by the iron(II)/alpha-ketoglutarate-dependent catalytic domains of the TET enzymes is consistent with epigenetic roles for oxidized 5-methylcytosine bases. J Am Chem Soc 138:9345–9348

    Article  CAS  PubMed  Google Scholar 

  • Vakoc CR, Sachdeva MM, Wang H et al (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26:9185–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varley KE, Gertz J, Bowling KM et al (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vella P, Scelfo A, Jammula S et al (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656

    Article  CAS  PubMed  Google Scholar 

  • Vilkaitis G, Suetake I, Klimasauskas S et al (2005) Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J Biol Chem 280:64–72

    Article  CAS  PubMed  Google Scholar 

  • Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Meyenn F, Iurlaro M, Habibi E et al (2016) Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol Cell 62:983

    Article  CAS  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Meister GE, Workman RE et al (2017) Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep 7:6732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu GL, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17:376–378

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Xu C, Kato A et al (2012) Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151:1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Liu K, Lei M et al (2018) DNA sequence recognition of human CXXC domains and their structural determinants. Structure 26:85–95 e83

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Mann MR, Lee SS et al (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci U S A 100:12207–12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Rau R, Goodell MA (2015) DNMT3A in haematological malignancies. Nat Rev Cancer 15:152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang X, Clark E et al (2010a) TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 20:1390–1393

    Article  PubMed  Google Scholar 

  • Zhang Y, Jurkowska R, Soeroes S et al (2010b) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38:4246–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZM, Lu R, Wang P et al (2018) Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziller MJ, Muller F, Liao J et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7:e1002389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work could not be cited due to the space limitations. Work in the authors laboratory has been supported by Boehringer Ingelheim (R.Z.J) and DFG SPP1784 (T.P.J).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renata Z. Jurkowska or Tomasz P. Jurkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurkowska, R.Z., Jurkowski, T.P. (2019). Establishment, Erasure and Synthetic Reprogramming of DNA Methylation in Mammalian Cells. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_1

Download citation

Publish with us

Policies and ethics