Skip to main content

Numerical Flow Calculations

  • Chapter
  • First Online:
Centrifugal Pumps
  • 2295 Accesses

Abstract

Real flows are described by partial differential equations which cannot be solved analytically in the general case. By dividing a complex flow domain into a multitude of small cells, these equations can be solved in an approximate manner by numerical methods. Because of their wide range of application, numerical flow calculations (“computational fluid dynamics” or “CFD” for short) have become a special discipline of fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The order of the truncation error alone does not determine the accuracy; it essentially implies that the exact solution is reached faster with increasing grid refinement.

  2. 2.

    In the investigations reported in [41] the CFD results were not very sensitive to the turbulence parameters. This finding was confirmed by the CFD studies reported in [5].

  3. 3.

    Such vortices are particularly aggressive with respect to cavitation erosion, Chap. 6.

  4. 4.

    Compare to CFD programs used in meteorology, which frequently give the correct forecast but fail without recognizable reason in other cases.

  5. 5.

    For example, the disk friction losses calculated by CFD in [33] were only 10% of the values expected according to Eq. (T3.6.11) which is confirmed by various measurements.

References

  1. Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. In: Proceedings of 27th International Pump Users Symposium, Texas A&M, pp. 34–44 (2011)

    Google Scholar 

  2. Bartsch, P.: Numerische Untersuchung der Leitrad-Laufrad-Wechselwirkungen in axialen Kreiselpumpen. Diss., TU Berlin (1994)

    Google Scholar 

  3. Bissig, M., Staubli, T.: Numerische Berechnung der Fluid-Rotorinteraktion im Radseitenraum von Hydromaschinen. In: VDI-Tagung Fluid-Struktur-Wechselwirkung, Heidelberg (2002)

    Google Scholar 

  4. Bouziad, A.Y., Farhat, M., Guennoun, F., Kueny, J.L., Avellan, F.: Physical modeling and simulation of leading edge cavitation, application to an industrial inducer. In: 5th International Symposium on Cavitation, Osaka, Cav03-Os-6-014 (2003)

    Google Scholar 

  5. Braun, O.: Part load flow in radial centrifugal pumps. Diss., EPF Lausanne (2009)

    Google Scholar 

  6. Casey, V.M.: Computational methods for preliminary design and geometry definition in turbomachinery. In: Nato AGARD Lecture Series 195 (1994)

    Google Scholar 

  7. Casey, V.M.: The industrial use of CFD in the design of turbomachinery. In: Nato AGARD Lecture Series 195 (1994)

    Google Scholar 

  8. Casey, V.M. et al.: Flow analysis in a pump diffuser. Part 2: Validation of a CFD code for steady flow. ASME FED 227, 135–143 (1995)

    Google Scholar 

  9. Cebici, T.: Turbulence Models and their Application. Springer, Berlin (2004). ISBN 3-540-40288-8

    Google Scholar 

  10. Chen, C.J., Patel, V.C.: Near-wall turbulence models for complex flows including separation. AIAA J. 26, 641–648 (1988)

    Article  Google Scholar 

  11. Cheng-I, Y.: A simulation of viscous incompressible flow through a multiple-blade-row turbomachinery. ASME FED 227, 11–18 (1995)

    Google Scholar 

  12. Coleman, H.W.: Some observations on uncertainties and the verification and validation of simulations. ASME J. Fluids Eng. 125, 733–735 (2003)

    Article  Google Scholar 

  13. Combes, J.F., et al.: Numerical investigation of the rotor-stator interaction in a centrifugal pump using a finite element method. ASME FEDSM97-3454 (1997)

    Google Scholar 

  14. Combes, J.F., et al.: Numerical and experimental analysis of the flow in a centrifugal pump at nominal and partial flow rate. ASME Paper 92-GT–284

    Google Scholar 

  15. Cooper, P., Graf, E.: Computational fluid dynamical analysis of complex internal flows in centrifugal pumps. In: Proceedings of the 11th International Pump Users Symposium, Houston, pp. 83–93 (1994)

    Google Scholar 

  16. Cugal, M., Baché, G.: Performance prediction from shutoff to runout flows for a complete stage of a boiler feedpump using CFD. ASME FEDSM97-3334 (1997)

    Google Scholar 

  17. Dawes, W.N.: A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser: flow analysis. ASME J. Turbomach. 117, 213–221 (1995)

    Article  Google Scholar 

  18. Dupont, P.: Numerical prediction of cavitation in pumps. In: Proceedings of 18th International Pump Users Symposium, Texas A&M, pp. 59–65 (2001)

    Google Scholar 

  19. Dupont, P., Casartelli, E.: Numerical prediction of the cavitation in pumps. ASME FEDSM2002–31189

    Google Scholar 

  20. Durbin, P.A., et al.: Rough wall modification of two-layer k-ε. ASME JFE 123, 16–21 (2001)

    Google Scholar 

  21. ERCOFTAC Special interest group on “Quality and trust in industrial CFD”. Best practice guidelines. http://www.ercoftac.org

  22. Favre, J.N.: Resolution du problème inverse par petites perturbations d’un écoulement potentiél incompressible. Diss., EPF Lausanne (1988)

    Google Scholar 

  23. Ferziger, J.H.: Review: simulation of incompressible turbulent flows. J. Compo Phys. 69(1), 1–48 (1987)

    Article  MathSciNet  Google Scholar 

  24. Ferzinger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1997)

    Google Scholar 

  25. Franc, J.P., et al.: La Cavitation. Mechanismes physiques et aspects industriels. Presses Universitaires Grenoble (1995)

    Google Scholar 

  26. Fraser, S.M., et al.: Improved k-ε-modeling of impeller flow performance of a mixed-flow pump under off-design operating states. Proc. IMechE. 207, 219–229 (1993)

    Article  Google Scholar 

  27. Freitas, C.J.: Engineering editorial policy statement on the control of numerical accuracy. ASME. J. Fluids Eng. 115, 339–340 (1993)

    Article  Google Scholar 

  28. Freitas, C.J.: Perspective: selected benchmarks from commercial CFD codes. ASME. J. Fluids Eng. 117, 208–218 (1995)

    Article  Google Scholar 

  29. Ginter, F.: Berechnung der instationären, turbulenten Strömung in hydraulischen Strömungsmaschien. Diss TU Stuttgart, 1997, Mitteilung Nr 12 Inst für Strömungsmechanik und hydraulische Maschinen

    Google Scholar 

  30. Ginter, F., Staubli, T.: Performance discontinuity of a shrouded centrifugal pump impeller. In: IMech Conference, pp. 1027–1049 (1999)

    Google Scholar 

  31. Ginter, F., et al.: Entwicklung eines Pumpenzulaufkrümmers mit Hilfe der Strömungsberechnung. Pumpentagung Karlsruhe B5 (1992)

    Google Scholar 

  32. Goto, A.: Study of internal flows in a mixed-flow pump impeller at various tip clearances using 3D viscous flow computations. ASME Paper 90-GT–36

    Google Scholar 

  33. Goto, A.: Numerical and experimental study of 3D flow fields within a diffuser pump stage at off-design condition. ASME FED 227, 1–9 (1995)

    Google Scholar 

  34. Göde, E.: 3-dimensional flow simulation in a pump-turbine. ASME FED 86, 29–34 (1989)

    Google Scholar 

  35. Graf, E.: Analysis of centrifugal impeller BEP and recirculating flows: comparison of quasi-3D and Navier-Stokes solutions. ASME Pumping Machinery Symposium, pp. 235–245 (1993)

    Google Scholar 

  36. Graf, E. et al.: Three-dimensional analysis in a multi-stage pump crossover diffuser. ASME Winter Annual Meeting, pp. 22-29 (1990)

    Google Scholar 

  37. Greim, R., et al.: Berechnung dreidimensionaler Strömung in Pumpenlanfrädem. Pumpentagung Karlsruhe B6 (1992)

    Google Scholar 

  38. Guide for verification and validation of computational fluid dynamics solutions. AIAA Guide G-077-l998, http://www.aiaa.org

  39. Gugau, M.: Beitrag zur Validierung der numerischen Berechnung von Kreiselpumpen. Diss., TU Darmstadt (2004)

    Google Scholar 

  40. Gülich, J.F.: Berechnung von Kreiselpumpen mit Navier-Stokes-Verfahren - aus der Sicht des Anwenders. Forsch. Ing. Wes. 60, 307–316 (1994)

    Article  Google Scholar 

  41. Gülich, J.F., Favre, J.N., Denus, K.: An assessment of pump impeller performance predictions by 3D-Navier-Stokes calculations. ASME FEDSM97-334l (1997)

    Google Scholar 

  42. Hansen, T.: Comparison of steady-state and transient rotor-stator interaction of an industrial centrifugal pump. In: CFX Users Conference (2001)

    Google Scholar 

  43. Hildebrandt, T.: Weiterentwicklung von 3D Navier-Stokes-Strömungsrechenverfahren zur Anwendung in hochbelasteten Verdichter- und Turbinengittern. Diss., Universität der Bundeswehr, München (1998)

    Google Scholar 

  44. Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss., EPF Lausanne (1998)

    Google Scholar 

  45. Holbein, P.: Berechnung dreidimensionaler reibungsbehafteter inkompressibler Innenströmungen. Diss., TU Hannover (1993)

    Google Scholar 

  46. Howard, J.H.G. et al.: Flow analysis in a spiral inducer impeller. ASME Paper 93-GT–227

    Google Scholar 

  47. Iaccarino, G.: Predictions of a turbulent separated flow using commercial CFD codes. ASME. J. Fluids Eng. 123, 819–828 (2001)

    Article  Google Scholar 

  48. Kamemoto, K., et al.: Analysis of unsteady characteristics of flows through a centrifugal pump impeller by an advanced vortex method. IAHR Symposium, Valencia, pp. 729–738 (1996)

    Google Scholar 

  49. Kaps, A.: Numerische Untersuchung der Strömung in einer radialen Kreiselpumpe mit dem Ziel einer wirkungsgrad- und lagerkraftoptimierten Gehäusegestaltung, Diss., TU Berlin (1996)

    Google Scholar 

  50. Kaupert, K.A.: Unsteady flow fields in a high specific speed centrifugal impeller. Diss., ETH Zürich (1997)

    Google Scholar 

  51. Kato, M., Launder, B.E.: The modeling of turbulent flows around stationary and vibrating square cylinders. In: 9th Symposium on Turbulent Shear Flows, Kyoto, paper 10-4 (1993)

    Google Scholar 

  52. Kubota, A., Kato, H., Yamaguchi, H.: Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil. In: 5th International Conference on Numerical Ship Hydrodynamics, Hiroshima (1989)

    Google Scholar 

  53. Lakslnninarayana, B.: An assessment of computational fluid dynamic techniques in the analysis of turbomachinery. ASME. J. Fluids Eng. 113, 315–352 (1991)

    Article  Google Scholar 

  54. Liu, W.: Modeling of swirling turbulent flows. Diss., TU Stuttgart (2001)

    Google Scholar 

  55. Mack, R., Drtina, P., Lang, E.: Numerical prediction of erosion on guide vanes and in labyrinth seals in hydraulic turbines. Wear, pp. 233–235, 685–691 (1999)

    Google Scholar 

  56. Majidi, K.: Numerische Berechnung der Sekundärströmung in radialen Kreiselpumpen zur Feststofförderung. Diss., TU Berlin (1997)

    Google Scholar 

  57. Menter, F.R.: A comparison of some recent eddy-viscosity turbulence models. Transactions ASME 118, 514–519 (1996)

    Google Scholar 

  58. Meier-Grotian, J.: Untersuchungen der Radialkrft auf das Laufrad einer Kreiselpumpe bei verschiedenen Spiralgehäuseformen. Diss., TU Braunschweig (1972)

    Google Scholar 

  59. Meschkat, S., Stoffel, B.: The local impeller head at different circumferential positions in a volute casing of a centrifugal pump in comparison to the characteristic of the impeller alone. In: 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne (2002)

    Google Scholar 

  60. Muggli, F., Holbein, P., Dupont. P.: CFD calculation of a mixed flow pump characteristic from shut-off to maximum flow: ASME FEDSM2001-18072 (2001)

    Google Scholar 

  61. Noll, B.: Numerische Stromungsmechanik. Springer, Berlin (1993)

    Book  Google Scholar 

  62. Oberkampf, W.L., Trucano, T.G.: Validation methodology in computational fluid dynamics. AIAA paper 2000-2549 (2000)

    Google Scholar 

  63. Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Sandia National Laboratories report 2002-0529 (2002)

    Google Scholar 

  64. Oertel, J.R.H., Laurien, E.: Numerische Strömungsmechanik. Springer, Berlin (1995)

    Book  Google Scholar 

  65. Roache, P.J.: Verification and validation in computational science and engineering. Hermosa, Albuquerque, http://www.hermosa-pub/hermosa (1998)

  66. Rodi, W.: Turbulence modelling for incompressible flows. Phys. Chem. Hydrodyn. 7(5/6), 297–324 (1986)

    Google Scholar 

  67. Rodi, W.: Turbulence Models and Their Application in Hydraulics, 3rd edn. Balkema, Rotterdam (1993)

    Google Scholar 

  68. Rütten, F.: Large eddy simulation in 90°-pipe bend flows. J. Turbul. 2, 003 (2001)

    Article  Google Scholar 

  69. Schachenmann, A., Gülich, J.F.: Vergleich von drei Navier-Stokes Berechnungsverfahren mit LDA-Messungen an einem radialen Pumpenlaufrad. Pumpentagung Karlsruhe B7 (1992)

    Google Scholar 

  70. Schachenmann, A., et al.: Comparison of 3 Navier-Stokes codes with LDA-measurements on an industrial radial pump impeller. In: ASME Fluids Engineering Conference, Los Angeles (1992)

    Google Scholar 

  71. Schäfer, M.: Numerik im Maschinenbau. Springer, Berlin (1999)

    Book  Google Scholar 

  72. Schilling, R.: A critical review of numerical models predicting the flow through hydraulic machinery bladings. In: 17th IAHR Symposium, Beijing, GL2 (1994)

    Google Scholar 

  73. Schilling, R.: Stand der numerischen Strömungssimulation bei hydraulischen Turbomaschinen. Festschrift zum Jubiläum 100 Jahre Turbomaschinen und 50 Jahre Fluidantriebstechnik an der TU Darmstadt (1997)

    Google Scholar 

  74. Schönung, B.E.: Numerische Strömungsmechanik. Springer, Berlin (1990)

    Book  Google Scholar 

  75. Song, C.C.S. et al.: Simulation of flow through Francis turbine by LES method. In: IAHR Symposium, Valencia. pp. 267–276 (1996)

    Google Scholar 

  76. Song, C.C.S., et al.: Simulation of flow through pump-turbine. In: IAHR Symposium, Valencia (1996)

    Google Scholar 

  77. Staubli, T., et al.: Verification of computed flow fields in a pump of high specific speed. ASME FED 227, 75–82 (1995)

    Google Scholar 

  78. Staubli, T., Bissig, M.: Numerical parameter study of rotor side spaces. In: 21st IAHR Symposium Hydraulic Machinery and systems, Lausanne (2002)

    Google Scholar 

  79. Steinmann, A.: Numerische und experimentelle Untersuchung der ein- und zweiphasigen Strömung in einem technisch belüfteten Abwasserteich. Diss TU Berlin (2002)

    Google Scholar 

  80. Stem, F., et al.: Comprehensive approach to verification and validation of CFD calculations Part 1: Methodology and procedures. ASME. J. Fluids Eng. 123, 793–802 (2001)

    Article  Google Scholar 

  81. Tanabe, S., et al.: Turbulent flow analysis in a pump impeller. ASME Fluid Mach. Forum FED 119 1–6 (1991)

    Google Scholar 

  82. Torbergsen, E., White, M.F.: Transient simulation of impeller/diffuser interactions. ASME FEDSM97-3453 (1997)

    Google Scholar 

  83. Tremante, A., et al.: Numerical turbulent simulation of the two-phase flow (liquid/gas) through a cascade of an axial pump. ASME FEDSM2001–18086

    Google Scholar 

  84. Treutz, G.: Numerische Simulation der instationären Strömung in einer Kreiselpumpe. Diss., TU Darmstadt (2002)

    Google Scholar 

  85. Visser, F.C.: Some user experience demonstrating the use of CFD for cavitation analysis and head prediction of centrifugal pumps. ASME FEDSM2001–18087

    Google Scholar 

  86. Watzelt, C., et al.: Real-time design of hydraulic machinery bladings on a parallel environment system. ASME FED 227, 45–51 (1995)

    Google Scholar 

  87. Chen, W.-C., et al.: CFD as a turbomachinery design tool: code validation. ASME FED 227, 67–74 (1995)

    Google Scholar 

  88. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, La Canada, California (1998)

    Google Scholar 

  89. Wu, C.H.: A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mixed-flow types. Trans. ASME 74, 1363–1380 (1952)

    Google Scholar 

  90. Zangeneh, M., Goto, A.: Turbodesign: next generation design software for pumps. World Pumps, pp 32–36 (2003 Feb)

    Google Scholar 

  91. Will, B.C., Benra, F.K., Dohmen, H.J.: Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing. J. Therm. Sci. 21(3), 197–208 (2012)

    Google Scholar 

  92. Juckelandt, K., Wurm, F.H.: Applicability of wall-function approach in simulations of turbomachinery. GT 2015-42014

    Google Scholar 

  93. Limbach, P., Skoda, R.: Numerical simulation and experimental validation for NPSH prediction of a low-specific speed centrifugal pump with a variation of cavitation model mass transfer parameters. In: 11th Pump User’s International Forum Düsseldorf (2016)

    Google Scholar 

  94. Juckelandt, K., Wurm, F.H.: Experimental and numerical analysis of a low-specific speed pump. In: 11th Pump User’s International Forum (2016)

    Google Scholar 

  95. Höller, S., et al: Low-specific speed mixed-flow API pump for single- and multistage usage. In: 11th Pump User’s International Forum (2016)

    Google Scholar 

  96. Nishi, Y., et al.: Effect of blade outlet angle on radial thrust of single-blade centrifugal pump. In: 26th IAHR Symposium Hydraulic Machinery and Systems (2012)

    Google Scholar 

  97. Berten, S., et al.: Experimental and numerical analysis of pressure pulsations and mechanical deformations in a centrifugal pump impeller. ASME AJK2011-06057

    Google Scholar 

  98. Feng, J., Benra, F.K., Dohmen, H.J.: Numerical investigation on pressure fluctuations for different configurations of vaned-diffuser pumps. Int. J. Rotating Mach. (2007)

    Google Scholar 

  99. Miyabe M et al: Rotating stall behavior in a diffuser of a mixed-flow pump and its suppression. ASME FEDSM-2008-55132

    Google Scholar 

  100. Schiffer, J., et al.: Performance analysis of a single-blade impeller based on unsteady 3D numerical simulation. In: 11th Pump User’s International Forum Düsseldorf (2016)

    Google Scholar 

  101. Lechler, S.: Numerische Strömungsberechnung. Springer, Berlin (2018)

    Book  Google Scholar 

  102. ANSYS CFX Theory Guide (internet) www.sharcnet.ca/Software/Ansys/16.2.3

  103. Chatagny, L., Berten, S.: Challenges and open questions in cavitation simulations on centrifugal pump applications. In: 11th Pump User’s International Forum Düsseldorf (2016), L01-046

    Google Scholar 

  104. Liu, H., Ding, J., et al.: Numerical research on hydraulically generated vibration and noise of a centrifugal pump volute with impeller outlet width variation. Math. Probl. Eng., article ID 620389 (2014). Hindawi

    Google Scholar 

  105. Liu, H., et al.: Investigation into transient flow in a centrifugal pump with wear ring clearance variation. Adv. Mech. Eng., article ID 693097 (2014). Hindawi

    Google Scholar 

  106. Wang, Y., et al.: Applicability of turbulence models to low-specific speed centrifugal pump. In: 26th IAHR Symposium (2012)

    Google Scholar 

  107. Spence, R., Amaral-Teixeira, J.: Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests. Computers & Fluids 37, 690–704 (2008)

    Article  Google Scholar 

  108. Roclawski, H.: Numerische und experimentelle Untersuchungen an einer radialen Kreiselpumpenstufe mit minimalem Stufendurchmesser. Diss., TU Kaiserslautern (2008)

    Google Scholar 

  109. Si, Q., et al.: Numerical investigation of pressure fluctuations in a centrifugal pump volute based on SAS model an experimental validation. Adv. Mech. Eng. (2014 Feb)

    Google Scholar 

  110. Roclawski, H., Hellmann, D.H.: Numerical simulation of a radial multistage centrifugal pump. AIAA 2006-1428

    Google Scholar 

  111. Menter, F.R.: Best practice: scale-resolving simulations in ANSYS CFD. Version 2, 2015

    Google Scholar 

  112. Li, X., et al.: Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing. Proc. IMechE Part A: J. Power Energy (2016)

    Google Scholar 

  113. Denton, J.D.: Some limitations of turbomachinery CFD. ASME GT2010-22540

    Google Scholar 

  114. Fleder, A.: Numerische und experimentelle Untersuchung des Einflusses wichtiger Geometrieparameter auf die Performance von Seitenkanalpumpen unter Berücksichtigung der Strömungsverluste. Thesis, TU Kaiserslautern (2015)

    Google Scholar 

  115. Fecarotta, O., et al.: Preliminary development of a method for impact erosion prediction in pumps running as turbines. MDPI Proc. 2, 680 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gülich, J.F. (2020). Numerical Flow Calculations. In: Centrifugal Pumps. Springer, Cham. https://doi.org/10.1007/978-3-030-14788-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14788-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14787-7

  • Online ISBN: 978-3-030-14788-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics