Skip to main content

Cellulose as a Potential Feedstock for Cellulose Enzyme Production

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Cellulose is a rich natural biopolymer on earth, found as a chief component of plant cell wall in lignocellulosic form. Unlike other compounds cellulose is not easily soluble in water; therefore enzymatic conversion of cellulose has become a key technology for biodegradation of lignocellulosic materials. Microorganisms such as aerobic bacteria, fungi, yeast, and actinomycetes produce cellulase that degrades cellulose by hydrolyzing the β-1,4-glycosidic linkages of cellulose (Fig. 6.1). In contrast to aerobic bacteria, anaerobic bacteria lack the ability to effectively penetrate into the cellulosic material which leads to the development of complexed cellulase systems called cellulosome. Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla HM, El-Shatoury SA (2007) Actinomycetes in rice straw decomposition. Waste Manag 27(6):850–853

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M (1994) Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48:199–202

    Article  CAS  Google Scholar 

  • Ali S, Hall J, Soole KL et al (1995) Targeted expression of microbial cellulases in transgenic animals. In: Petersen SB, Svensson B, Pedersen S (eds) Carbohydrate bioengineering, vol 10 of progress in biotechnology. Elsevier, Amsterdam, pp 279–293

    Chapter  Google Scholar 

  • Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 327–342

    Google Scholar 

  • Baker RA, Wicker L (1996) Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol 7(9):279–284

    Article  CAS  Google Scholar 

  • Baker JO, McCarley JR, Lovett R et al (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol A 121(1–3):129–148

    Article  Google Scholar 

  • Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357

    Article  CAS  Google Scholar 

  • Bassi R, Pineau B, Dainese P et al (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 16:552–559

    Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  CAS  PubMed  Google Scholar 

  • Bernardez TD, Lyford K, Hogsett DA et al (1993) Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, Avicel, and lignin. Biotechnol Bioeng 42(7):899–907

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22(3):393–399

    Article  Google Scholar 

  • Bronnenmeier K, Rucknagel KP, Staudenbauer WL (1991) Purification and properties of a novel type of exo-1,4-betaglucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Buchert J, Oksanen T, Pere J, Siika-aho M, Suurnakki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium—enzymes, vol 2 of biological control and commercial applications, pp 343–363

    Google Scholar 

  • Canales AM, Garza R, Sierra JA et al (1988) The application of beta-glucanase with additional side activities in brewing. MBAA Tech Q 25:27–31

    Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparatism and lytic enzymes. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 327–342

    Google Scholar 

  • Chiacchierini E, Mele G, Restuccia D, Vinci G (2007) Impact evaluation of innovative and sustainable extraction technologies on olive oil quality. Trends Food Sci Technol 18(6):299–305

    Article  CAS  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71(5):2412–2417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez JM, Ellis J, Bishop DP (2002) Using cellulases to improve the dimensional stability of cellulosic fabrics. Text Res J 72(8):673–680

    Article  CAS  Google Scholar 

  • Cowan WD (1996) Animal feed. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371

    Google Scholar 

  • de Carvalho LMJ, de Castro IM, da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro- and ultra-filtration. J Food Eng 87(4):447–454

    Article  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  CAS  PubMed  Google Scholar 

  • De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156

    Article  CAS  Google Scholar 

  • Devillard E, Goodheart DB, Karnati SKR et al (2004) Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol 186:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries RP, Visser J (2001) Aspergillus enzymes involved in plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  CAS  Google Scholar 

  • Dhiman TR, Zaman MS, Gimenez RR et al (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101(1–4):115–125

    Article  CAS  Google Scholar 

  • Dienes D, Egyhazi A, Reczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20(1):11–21

    Article  CAS  Google Scholar 

  • Dourado F, Bastos M, Mota M et al (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg, pp 1–407

    Google Scholar 

  • Fantozzi P, Petruccioli G, Montedoro G (1977) Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse 54:381–388

    CAS  Google Scholar 

  • Fennema OW (1985) Food chemistry. Marcel Dekker, New York

    Google Scholar 

  • Fontaine S, Bardoux G, Benest D et al (2004) Mechanisms of the priming effect in a Savannah soil amended with cellulose. Soil Sci Soc Am J 68(1):125–131

    Article  CAS  Google Scholar 

  • Fortun-Lamothe L, Gidenne T, Debray L, et al 2001 Intake regulation, performances and health status according to feeding strategy around weaning. In: Proceedings of the second meeting of COST 848 working group 4, Gödöllő, pp 40–41

    Google Scholar 

  • Galante YM, DeConti A, Monteverdi R (1998) Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium—enzymes, vol 2 of biological control and commercial applications. Taylor & Francis, London, pp 311–326

    Google Scholar 

  • Gavrilescu M, Nicu M (2004) Source reduction and waste minimization. Ecozone Press, Iasi

    Google Scholar 

  • Ghosh P, Singh A (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol 39:295–333

    Article  CAS  Google Scholar 

  • Gilligan W, Reese ET (1954) Evidence for multiple components in microbial cellulases. Can J Microbiol 1:90–107

    Article  CAS  PubMed  Google Scholar 

  • Godfrey T, West S (1996) Textiles. In: Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371

    Google Scholar 

  • Graham H, Balnave D (1995) Dietary enzymes for increasing energy availability. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feedings. VHC, Weinheim, pp 296–309

    Google Scholar 

  • Grassin C, Fauquembergue P (1996) Fruit juices. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 226–264

    Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mehta G, Khasa YP et al (2010) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22(4):797–804

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84:1103–1109

    Article  CAS  Google Scholar 

  • Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 2. Taylor & Francis, London, pp 229–265

    Google Scholar 

  • Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54:41–55

    Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 280(Pt 2):309–316

    Article  CAS  Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358–364

    Article  CAS  PubMed  Google Scholar 

  • Hsu JC, Lakhani NN (2002) Method of making absorbed tissue from recycled waste paper. US Patent 6413363

    Google Scholar 

  • Ibrahim NA, El-Badry K, Eid BM et al (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121

    Article  CAS  Google Scholar 

  • Inar IC (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40(2):945–949

    Article  CAS  Google Scholar 

  • Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997

    Article  CAS  PubMed  Google Scholar 

  • John F, Monsalve G, Medina PIV et al (2006) Ethanol production of banana shell and cassava starch. Dyna Universidad Nacional de Colombia 73:21–27

    Google Scholar 

  • Kakiuchi M, Isui A, Suzuki K et al (1998) Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol 180:4303–4308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantelinen A, Jokinen O, Sarkki ML, et al (1995) Effects of enzymes on the stability of colloidal pitch. In: Proceedings of the 8th international symposium on wood and pulping chemistry 1, Helsinki, pp 605–612

    Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41–53

    Article  CAS  Google Scholar 

  • Karnis A (1995) The role of latent and delatent mechanical pulp fines in sheet structure and pulp properties. Paperi Ja PuuPaper Timber 77:491–497

    CAS  Google Scholar 

  • Kibblewhite RP, Bawden AD, Brindley CL (1995) TMP fiber and fines qualities of 13 radiata pine wood types. APPITA 48:367–377

    Google Scholar 

  • Koivula A, Ruohonen L, Wohlfahrt G et al (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 124:10015–10024

    Article  CAS  PubMed  Google Scholar 

  • Kruus K, Wang WK, Ching J et al (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177:1641–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Kuhad RC, Manchanda M, Singh A (1999) Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Eng 20(2):133–135

    CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP et al (2010a) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP (2010b) Bioethanol production from lignocellulosic biomass: an overview. In: Lal B (ed) Wealth from waste. Teri Press, New Delhi

    Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557

    Article  CAS  PubMed  Google Scholar 

  • Kvesitadze G, Gogilashvidi L, Svaondize P et al (1986) Exogeneous celluloses of thermophilic micromycetes. II. Thermo stability of enzyme preparations. Acta Biotechnol 6:361–367

    Article  CAS  Google Scholar 

  • Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336

    Article  CAS  PubMed  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  CAS  PubMed  Google Scholar 

  • Lewis GE, Hunt CW, Sanchez WK et al (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wilson DB (2008) Chitin binding by Thermobifida fusca cellulase catalytic domains. Biotechnol Bioeng 100:644–652

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Doi RH (1998) Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome. Gene 211:39–47

    Article  CAS  PubMed  Google Scholar 

  • Ljundahl LG, Eriksson KE (1985) Ecology of microbial cellulease degradation. In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 237–299

    Chapter  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A et al (1994) Purification, characterization, and synergistic activity of a glucan 1,3-beta-glucosidase and an N-acetylbeta-glucosaminidase from Trichoderma harzianum. Phytopathology 84(4):398–405

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Laser MS, Bransby D et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Maheswari R, Bharadwaz G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–468

    Article  Google Scholar 

  • Mai C, Kues U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494

    Article  CAS  PubMed  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1(2):105–114

    Article  CAS  Google Scholar 

  • Mansfield SD, Wong KKY, De Jong E et al (1996) Modification of Douglas-fir mechanical and Kraft pulps by enzyme treatment. TAPPI J 79(8):125–132

    CAS  Google Scholar 

  • Marlatt C, Ho CT, Chien M (1992) Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem 40(2):249–252

    Article  CAS  Google Scholar 

  • McBee RH (1959) The anaerobic thermophilic cellulolytic bacteria. Bacteriol Rev 14:51–63

    Google Scholar 

  • McKendry P (2002) Energy production from biomass: overview of biomass. Bioresour Technol 83:37–43

    Article  CAS  PubMed  Google Scholar 

  • Mejia-Castillo T, Hidalgo-Lara ME, Brieba LG et al (2008) Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cellulomonas flavigena. Biotechnol Lett 30:681–687

    Article  CAS  PubMed  Google Scholar 

  • Milala EA, Onyenekwe PC, Ameh DA, et al (2000) Cellulase production from sorghum bran by Aspergillus niger SL:1: an assessment of pretreatment methods. In: Proceedings of the international conference on biotechnology: commercialization and food security (ICBCFS ’00), Abuja, pp 153–159

    Google Scholar 

  • Milala MA, Shugaba A, Gidado A et al (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Research Journal of Agriculture and Biological Science 1:325–328

    Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13(6–7):205–216

    Article  CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. http://www.fao.org/docrep/w7241e/w7241e00.htm. #Contents

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Murray WD, Sowden LC, Colvin JR (1984) Bacteroides cellulosolvens sp. nov. a cellulolytic species from sewage sludge. Int J Syst Bacteriol 34:185–187

    Article  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16

    Article  Google Scholar 

  • OECD (1998) Biotechnology for clean industrial products and processes. Towards industrial sustainability. OECD, Paris

    Book  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. In: Proceedings of the 20th European Brewery Chemistry Congress, Helsinki, pp 419–425

    Google Scholar 

  • Ortiz Escobar ME, Hue NV (2008) Temporal changes of selected chemical properties in three manure—amended soils of Hawaii. Bioresour Technol 99(18):8649–8654

    Article  CAS  PubMed  Google Scholar 

  • Ory R, St. Angelo AJ (1977) Enzymes in food and beverage processing. American Chemical Society, Washington, D.C.

    Book  Google Scholar 

  • Parsiegla G, Reverbel C, Tardif C et al (2008) Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol 375:499–510

    Article  CAS  PubMed  Google Scholar 

  • Pascual JJ (2001) Recent advances on early weaning and nutrition around weaning. In: Proceedings of the 2nd meeting of COST 848 working group 4, Gödöllő, pp 31–36

    Google Scholar 

  • Paulo AC, Gubitz GM (2003) Textile processing with enzymes. Woodhead, Cambridge

    Book  Google Scholar 

  • Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771

    Article  CAS  Google Scholar 

  • Pere J, Siika-aho M, Buchert J et al (1995) Effects of purified T. reesei cellulases on the fiber properties of Kraft pulp. TAPPI J 78(6):71–78

    CAS  Google Scholar 

  • Pere J, Puolakka A, Nousiainen P et al (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89(2–3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Prassad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recyc 50:1–39

    Article  Google Scholar 

  • Rai P, Majumdar GC, Das GS et al (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568

    Article  CAS  Google Scholar 

  • Ranalli A, Pollastri L, Contento S et al (2003) Enhancing the quality of virgin olive oil by use of a new vegetable enzyme extract during processing. Eur Food Res Technol 216(2):109–115

    Article  CAS  Google Scholar 

  • Reese ET, Mandels M (1971) Enzymatic degradation. In: Bikaies NM, Segal L (eds) Cellulase and cellulose derivatives. Part 5. Wiley Interscience, New York, pp 1079–1094

    Google Scholar 

  • Reese ET, Siu RGH, Levin MS (1950) The biological degradation of soluble cellulase derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reverbel-Leroy C, Pages S, Belaich A et al (1997) The processive endoglucanase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salonen SM (1990) Method for manufacturing paper or cardboard and product containing cellulase. US Patent 4980023

    Google Scholar 

  • Sánchez MM, Pastor FIJ, Diaz P (2003) Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. Eur J Biochem 270:2913–2919

    Article  PubMed  CAS  Google Scholar 

  • Scott BR, St-Pierre P, Lavigne J, et al (2010) Novel lignin-resistant cellulase enzymes. US Patent 20100221778

    Google Scholar 

  • Semichaevsky VD (1989) Cellulases of higher basidiomycetes. Mikol Filopatol 23:58–590

    Google Scholar 

  • Sharyo M, Sakaguchi H, Ohishi M et al (1978) Method of making sanitary paper from chemical pulp using a single component cellulase that does not contain cellulose-building domain. US Patent 6468391

    Google Scholar 

  • Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the U.S. department of energy’s research and development activities for bioethanol. Biotechnol Prog 15:817–827

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Gilkes NR, Kilburn DG et al (1995) Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. J Biochem 311:67–74

    Article  CAS  Google Scholar 

  • Shrivastava B, Thakur S, Khasa YP et al (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Hayashi K (1995) Microbial cellulases, protein architecture molecular properties and biosynthesis. Adv Appl Microbiol 40:1–44

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar PKR, Schugerl K (1991) Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 18(3):205–212

    Article  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I. K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Sreenath HK, Shah AB, Yang VW et al (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20

    Article  CAS  Google Scholar 

  • Stork G, Puls J (1996) Changes in properties of different recycled pulps by endoglucanase treatments. In: Srebotnik E, Mesner K (eds) Proceedings of the international conference on biotechnology in the pulp and paper industry: recent advances in applied and fundamental research, vol 1. Facultas-Universitatsverlag, Vienna, pp 145–150

    Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64(11):832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Suominen P, Reinikainen T (1993) Foundation for biotechnical and industrial fermentation research. In: Proceedings of the 2nd symposium on Trichoderma Reesei cellulases and other hydrolases (TRICEL ’93), vol 8. Espoo, Finland

    Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D et al (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Article  CAS  PubMed  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insights into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Tejada M, Gonzalez JL, García-Martínez AM et al (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VN, Pathak AN, Lehri LK (1987) Effect of plant waste incorporation by different methods under uninoculated and inoculated conditions on wheat crops. Biol Wastes 21(4):267–273

    Article  Google Scholar 

  • Tounissen MJ, Dekont GVM, Op-den Camp HJM et al (1993) Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. Appl Biochem Biotechnol 39–40:177–189

    Article  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406

    Article  CAS  PubMed  Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. Wiley, New York

    Google Scholar 

  • UNEP (1999) International cleaner production information clearinghouse, CD version 1. United Nations Environment Programme, Division of Technology, Industry and Economics, Paris. www.emcentre.com/unepweb/

    Google Scholar 

  • Van Berkel R (2000) Cleaner production for process industries. Plenary lecture. Chemeca, Perth

    Google Scholar 

  • Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  CAS  PubMed  Google Scholar 

  • Wood TM, McCrae SI (1972) Purification and properties of Q component of Trichoderma koningii cellulose. J Biochem 128:1183–1192

    Article  CAS  Google Scholar 

  • Wood TM, McCrae SI (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components solubulising with reference to the involvement of two immunologically distinct cellobiohydrolases. J Biochem 234:93–99

    Article  CAS  Google Scholar 

  • Wood TM, McCrae SI, Bhat MK (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of native cellulose. J Biochem 260:37–43

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  CAS  PubMed  Google Scholar 

  • Yanling H, Youfang D, Yanquan L (1991) Two cellulolytic Clostridium species. Clostridium cellulosi sp. nov. and clostridium cellulofermentans sp. Int J Syst Bacteriol 41:306–309

    Article  Google Scholar 

  • Yoon JJ, Cha CJ, Kim YS et al (2008) Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett 30:1373–1378

    Article  CAS  PubMed  Google Scholar 

  • Youn KS, Hong JH, Bae DH et al (2004) Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. J Membr Sci 228(2):179–186

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-HP (2008) Reviving the carbohydrate economy via multi-product biorefineries. J Ind Microbiol Biotechnol 35:367–375

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-HP (2009) A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energ Environ Sci 2:272–282

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-HP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272

    Article  CAS  PubMed  Google Scholar 

  • Zosel T (1994) Pollution prevention in the chemical industry. In: Edgerly D (ed) Opportunities for innovation: pollution prevention. National Institute of Standards and Technology, Gaithersburg, pp 13–25

    Google Scholar 

  • Zverlov VV, Schantz N, Schwarz WH (2005) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol Lett 249:353–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors acknowledge the Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Faizabad, Uttar Pradesh, India, and Government of Uttar Pradesh, India, for awarding the center of excellence to the department.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Verma, T. (2019). Cellulose as a Potential Feedstock for Cellulose Enzyme Production. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_6

Download citation

Publish with us

Policies and ethics