Skip to main content

Potential Applications of Lignin

  • Chapter
  • First Online:

Abstract

The increasing consumption of fossil fuels is associated with environmental issues such as global warming and environmental pollution. Therefore, efforts have been made to find sustainable alternatives for different materials and energy sources. Plant biomass, especially wood, is the most important renewable material. The main constituents of vascular plants are cellulose with a content of 42–51%, hemicellulose with a content of 24–40%, and lignin with a content of 18–30%. Cellulose and hemicellulose represent the cell walls, while lignin acts as a strengthener thereof, and inhibits enzymatic degradation, regulates water transport, and demonstrates antibacterial activity. The utilization of todays and potential tomorrows application of lignin is summarizes in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Applications R (1992) Lignins: a safe solution for roads 1(3)

    Google Scholar 

  • Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem, 1861–1877

    Google Scholar 

  • Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234

    Article  Google Scholar 

  • Behr A, Seidensticker T (2018) Einführung in die Chemie nachwachsender Rohstoffe. Springer Spektrum, Berlin, Heidelberg

    Book  Google Scholar 

  • Bjørsvik H-R, Minisci F (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Process Res Dev 3(5):330–340

    Google Scholar 

  • Blecua M, Fatas E, Ocon P, Valenciano J, de la Fuente F, Trinidad F (2017) Influences of carbon materials and lignosulfonates in the negative active material of lead-acid batteries for microhybrid vehicles. J Energy Storage 11:55–63

    Article  Google Scholar 

  • Boden DP (1998) Selection of pre-blended expanders for optimum lead/acid battery performance. J Power Sources 73(1):89–92

    Article  Google Scholar 

  • Bourzac K (2015) Inner workings: paving with plants. Proc Natl Acad Sci USA 112(38):11743–11744

    Article  Google Scholar 

  • Bryan CC (1954) Manufacture of vanillin from lignin. United States Patent, 2,692,291

    Google Scholar 

  • Calvo-Flores FG, Dobado JA, Isac-GarcÃa JÃ, MartÃn-MartÃnez FJ (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. Wiley

    Google Scholar 

  • Chan SLH, Baker CGJ, Beeckmans JM (1976) Flocculating properties of high molecular weight lignosulphonates. Powder Technol 13:223–230

    Article  Google Scholar 

  • Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop N (2012) Influence of lignin content on photodegradation in wood/HDPE composites under UV weathering. BioResources 7(1):38–55

    Google Scholar 

  • Chen Y, Frihart CR, Cai Z, Lorenz LF, Stark NM (2013) Lignin-based phenol-formaldehyde resins from purified CO2 precipitated Kraft lignin (PCO2KL). In: International conference on wood adhesives, pp 601–611

    Google Scholar 

  • da Silva EAB, Zabkova M, Araújo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodrigues AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87(9):1276–1292

    Article  Google Scholar 

  • Dallmeyer I, Chowdhury S, Kadla JF (2013) Preparation and characterization of Kraft lignin-based moisture-responsive films with reversible shape-change capability. Biomacromol 14(7):2354–2363

    Article  Google Scholar 

  • Dehne L, Vila Babarro C, Saake B, Schwarz KU (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind Crops Prod 86:320–328

    Article  Google Scholar 

  • Detroit WJ (1988) Controlled release formulation for fertilizers. United States Patent, 4,756,738

    Google Scholar 

  • Detroit WJ (1991) Lignosulfonates treated fertilizer particles. United States Patent, 5,041,153

    Google Scholar 

  • Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701

    Article  Google Scholar 

  • Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4(1):35–46

    Article  Google Scholar 

  • Fargues C, Mathias Á, Rodrigues A (1996) Kinetics of vanillin production from Kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36

    Article  Google Scholar 

  • Feng Q, Chen F, Wu H (2011) Preparation and characterization of a temperature-sensitive lignin-based hydrogel. BioResources 6(4):4942–4952

    Google Scholar 

  • Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Biores Technol 79(2):103–111

    Article  Google Scholar 

  • Gundersen SA, Sjoblom J (1991) High and Low-molecular-weight lignosulfonates and Kraft lignins as Oil/water-emulsion stabilizers studied by means of electrical conductivity. Colloid Polym Sci 277:462–468

    Article  Google Scholar 

  • Hambardzumyan A, Foulon L, Chabbert B, Aguié-Béghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13(12):4081–4088

    Article  Google Scholar 

  • Hult EL, Koivu K, Asikkala J, Ropponen J, Wrigstedt P, Sipilä J, Poppius-Levlin K (2013) Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging. Holzforschung 67(8):899–905

    Article  Google Scholar 

  • Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ (2012) Oxygen-scavenging Coatings and Films Based on Lignosulfonates and Laccase. J Biotechnol 161(1):14–18

    Article  Google Scholar 

  • Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920

    Google Scholar 

  • Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200

    Google Scholar 

  • Koivu KAY, Sadeghifar H, Nousiainen PA, Argyropoulos DS, Sipilä J (2016) Effect of fatty acid esterification on the thermal properties of softwood Kraft lignin. ACS Sustain Chem Eng 4(10):5238–5247

    Article  Google Scholar 

  • Kouisni L, Fang Y, Paleologou M, Ahvazi B, Hawari J, Zhang Y, Wang X-M (2011) Kraft lignin recovery and its use in the preparation of lignin-based phenol formaldehyde resins for plywood. Cellul Chem Technol 45(7–8):515–520

    Google Scholar 

  • Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-ADIPIC acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154

    Article  Google Scholar 

  • Luo J-J, Lü Q-F (2015) Controllable preparation and heavy-metal-ion adsorption of lignosulfonate-polypyrrole composite nanosorbent. Polym Compos 36(8):1546–1556

    Article  Google Scholar 

  • Luo S, Cao J, McDonald AG (2017) Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind Crops Prod 97:281–291

    Article  Google Scholar 

  • Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4(3):283–296

    Article  Google Scholar 

  • Meier JN, Fyles JW, MacKenzie AF, O’Halloran IP (1993) Effects of lignosulfonate-fertilizer applications on soil respiration and nitrogen dynamics. Can J Soil Sci 73(2):233–242

    Article  Google Scholar 

  • Nada AMA, El-Diwany AI, Elshafei AM (1989) Infrared and antimicrobial studies on different lignins. Acta Biotechnol 9(3):295–298

    Article  Google Scholar 

  • Olivares M, Guzmán JA, Natho A, Saavedra A (1988) Kraft lignin utilization in adhesives. Wood Sci Technol 22(2):157–165

    Article  Google Scholar 

  • Pawar SN, Venditti RA, Jameel H, Chang H-M, Ayoub A (2016) Engineering physical and chemical properties of softwood Kraft lignin by fatty acid substitution. Ind Crops Prod 89:128–134

    Article  Google Scholar 

  • Plank J (2004) Applications of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol 66(1):1–9

    Article  Google Scholar 

  • Qian Y, Qiu X, Zhu S (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem 17(1):320–324

    Article  Google Scholar 

  • Qiao W, Li S, Guo G, Han S, Ren S, Ma Y (2015) Synthesis and characterization of phenol-formaldehyde resin using enzymatic Hydrolysis lignin. J Ind Eng Chem 21:1417–1422

    Article  Google Scholar 

  • Rand DAJ, Boden DP, Lakshmi CS, Nelson RF, Prengaman RD (2002) Manufacturing and operational issues with lead-acid batteries. J Power Sources 107(2):280–300

    Article  Google Scholar 

  • Reknes IK (2013) Quality lignosulfonate for concrete. The Masterbuilder, 84–90

    Google Scholar 

  • Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck K, Cohen Hubal EA, Paunov VN, Stoyanov SD, Velev OD (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 10(9):817–823

    Article  Google Scholar 

  • Rodrigues AE (1995) Production of vanillin by oxidation of pine Kraft lignins with oxygen. Holzforschung 49(3):273–278

    Article  Google Scholar 

  • Saake B, Lehnen R (2012) Lignin, Ullmann’s encyclopaedia of industrial. Chemistry 21:21–36

    Google Scholar 

  • Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14(12):3295–3303

    Article  Google Scholar 

  • Salvesen JR, Brink DL, Diddams DG, Owzarski P, Owzarski W (1948) Process for making vanillin. United States Patent Office, 2,434,626

    Google Scholar 

  • Scripture EW, Heights S (1937) Indurating composition for concrete. United States Patent Office, 2,081,642

    Google Scholar 

  • Shakeri A, Rad SM, Ghasemian A (2009) Oxidative production of vanillin from industrial lignin using oxygen and nitrobenzene: a comparative study. Int J Allied Sci 2(24):1165–1171

    Google Scholar 

  • Sjoblom J (2001) Encyclopedic handbook of emulsion technology. CRC Press

    Google Scholar 

  • Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577

    Article  Google Scholar 

  • Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromol 6(4):1895–1905

    Article  Google Scholar 

  • Tran H, Vakkilainnen EK (2012) The Kraft chemical recovery process. TAPPI Kraft Recovery Course, pp 1–8

    Google Scholar 

  • Van Vliet D, Slaghek T, Giezen C, Haaksman I (2016) Lignin as a green alternative for bitumen. Proceedings of E&E congress 2016—6th Eurasphalt Eurobitume Congress

    Google Scholar 

  • Vartiainen J, Vähä-Nissi M, Harlin A (2014) Biopolymer films and coatings in packaging applications—a review of recent developments. Mater Sci Appl 5(10):708–718

    Google Scholar 

  • Vázquez G, González J, Freire S, Antorrena G (1997) Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Biores Technol 60(3):191–198

    Article  Google Scholar 

  • With LBE, Boden DP (2008) Lead-acid battery expanders with improved life at high temperatures. United States Patent Application Publications, US2008/0305396 A1, 1, (19)

    Google Scholar 

  • Xie S, Li Q, Karki P, Zhou F, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem Eng 5(4):2817–2823

    Article  Google Scholar 

  • Yang J, Wu JX, Lü QF, Lin TT (2014a) Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain Chem Eng 2(5):1203–1211

    Article  Google Scholar 

  • Yang S, Wen J-L, Yuan T-Q, Sun R-C (2014b) Characterization and phenolation of biorefinery Technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv 4(101):57996–58004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Kienberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kienberger, M. (2019). Potential Applications of Lignin. In: Krozer, Y., Narodoslawsky, M. (eds) Economics of Bioresources. Springer, Cham. https://doi.org/10.1007/978-3-030-14618-4_12

Download citation

Publish with us

Policies and ethics