Skip to main content

Real-Time MRI-Guided Particle Therapy

  • Chapter
  • First Online:
MRI for Radiotherapy

Abstract

Real-time MRI guidance for x-ray beam radiotherapy has been delivered clinically since 2014. Many engineering challenges of integrating x-ray therapy systems capable of intensity-modulated radiotherapy (IMRT) with MRI scanners have therefore been overcome. As promised with the straightforward concept of using real-time image guidance with superior-quality MRI, early clinical results indicate positive improvements over conventional IGRT, and more challenging tumour sites are being treated. In essence, the x-ray beam-based radiotherapy community is now expanding into the direction of MRI guidance more than ever before. This leads us to propose a new challenge with even higher complexity and higher stakes: what can real-time MRI guidance offer for particle therapy? Particle therapy planning, delivery and outcome are inherently more dependent on having accurate knowledge of the patient anatomy than x-ray therapy. Utilising real-time and anatomically correct patient soft tissue information should expand the horizons in terms of treatment delivery accuracy, however propose a new set of engineering challenges in the already complex domain of particle therapy. In this chapter we provide a broad overview of the important elements of real-time MRI-guided particle therapy (MRPT). This includes the rationale, current literature, treatment workflows, engineering challenges and finally a concept design to illustrate some of the complexities of the modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y, Rodriguez V, Olsen L, Robinson C, Michalski J, Mutic S, Olsen J. Online magnetic resonance image guided adaptive radiation therapy: First clinical applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.

    Article  Google Scholar 

  • Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, Plastaras J, Bucci MK, Yock TI, Bonilla L, Price R, Harris EE, Konski AA. An evidence based review of proton beam therapy: the report of astros emerging technology committee. Radiother Oncol. 2012;103(1):8–11.

    Article  Google Scholar 

  • Bucholz R, Miller D. System combining prootn beam irradiation and magnetic resonance imaging. Patent number US 6725078b2. April 20, 2004.

    Google Scholar 

  • Dewhirst MW, Birer SR. Oxygen-enhanced MRI is a major advance in tumor hypoxia imaging. Can Res. 2016;76:769–72.

    Article  CAS  Google Scholar 

  • Fallone BG, Carlone M, Murray B. Integrated external beam radiotherapy and MRI system. Patent number US 946777b2. October 18, 2016.

    Google Scholar 

  • Fuchs H, Moser P, Grschl M, Georg D. Magnetic field effects on particle beams and their implications for dose calculation in MR guided particle therapy. Med Phys. 2017;44(3):1149–56.

    Article  CAS  Google Scholar 

  • Han D, Siebers JV, Williamson JF. A linear, separable two-parameter model for dual energy ct imaging of proton stopping power computation. Med Phys. 2016;43(1):600–12.

    Article  CAS  Google Scholar 

  • Hartman J, Kontaxis C, Bol GH, Frank SJ, Lagendijk JJW, van Vulpen M, Raaymakers BW. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 t. Phys Med Biol. 2015;60(15):5955.

    Article  CAS  Google Scholar 

  • Hoffmann A, Gantz S, Grossinger P, Karsch L, Pawelke J, Serra A, Smeets J, Schellhammer S. Characterization of in-beam mr imaging performance during proton beam irradiation. Radiother Oncol. 2018;127(Suppl 1):S548.

    Google Scholar 

  • Koivula L, Wee L, Korhonen J. Feasibility of mri-only treatment planning for proton therapy in brain and prostate cancers: dose calculation accuracy in substitute ct images. Med Phys. 2016;43(8):4634–42.

    Article  Google Scholar 

  • Kruip MJM. Particle radiation therapy equipment. Patent number US 8838202b2. Sept 16, 2014.

    Google Scholar 

  • Kurz C, Landry G, Resch AF, Dedes G, Kamp F, Ganswindt U, Belka C, Raaymakers BW, Parodi K. A monte-carlo study to assess the effect of 1.5 t magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Phys Med Biol. 2017;62(21):8470.

    Article  CAS  Google Scholar 

  • Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, Blumenschein GR Jr, Heymach JV, Vaporciyan AA, Swisher SG, Allen PK, Choi NC, TF DL, Hahn SM, Cox JD, Lu CS, Mohan R. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:1813–22.

    Article  Google Scholar 

  • Maspero M, van den Berg CAT, Landry G, Belka C, Parodi K, Seevinck PR, Raaymakers BW, Kurz C. Feasibility of mr-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-ct generation method. Phys Med Biol. 2017;62(24):9159.

    Article  CAS  Google Scholar 

  • Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real-time MRI-guided proton therapy. Med Phys. 2014;41(11):111713.

    Article  CAS  Google Scholar 

  • Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Proton beam deflection in mri fields: implications for mri-guided proton therapy. Med Phys. 2015;42(5):2113–24.

    Article  CAS  Google Scholar 

  • Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: real-time mri-guided proton therapy. Med Phys. 2017;44(8):e77–90.

    Article  CAS  Google Scholar 

  • OConnor JP. System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy. Patent number US 8427148b2. April 23, 2013.

    Google Scholar 

  • O’Connor JPB, Boult JKR, Jamin Y, et al. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Can Res. 2016;76:787–95.

    Article  Google Scholar 

  • Odei BCL, Boothe D, Keole SR, Vargas CE, Foote RL, Schild SE, Ashman JB. A 20-year analysis of clinical trials involving proton beam therapy. Int J Part Ther. 2016;3(3):398–406.

    Article  Google Scholar 

  • PadillaCabal F, Georg D, Fuchs H. A pencil beam algorithm for magnetic resonance imageguided proton therapy. Med Phys. 2018;45(5):2195–204.

    Article  CAS  Google Scholar 

  • Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909–23.

    Article  CAS  Google Scholar 

  • Raaymakers BW, Raaijmakers AJE, Lagendijk JJW. Feasibility of MRI guided proton therapy: magnetic field dose effects. Phys Med Biol. 2008;53(20):5615–22.

    Article  CAS  Google Scholar 

  • Rank CM, Hnemohr N, Nagel AM, Rthke MC, Jkel O, Greilich S. Mri-based simulation of treatment plans for ion radiotherapy in the brain region. Radiother Oncol. 2013a;109(3):414–8.

    Article  Google Scholar 

  • Rank CM, Tremmel C, Hnemohr N, Nagel AM, Jakel O, Greilich S. Mri-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach. Radiat Oncol. 2013b;8(1):51.

    Article  Google Scholar 

  • Schellhammer SM, Hoffmann AL. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Phys Med Biol. 2017;62(4):1548.

    Article  Google Scholar 

  • Schellhammer S, Karsch L, Smeets J, LAbbate C, Henrotin S, van der Kraaij E, Lhr A, Quets S, Pawelke J, Hoffmann A. First in-beam mr scanner for image-guided proton therapy: beam alignment and magnetic field effects. Radiother Oncol. 2018;127.(Suppl 1:S315–6.

    Article  Google Scholar 

  • Taasti VT, Petersen JBB, Muren LP, Thygesen J, Hansen DC. A robust empirical parametrization of proton stopping power using dual energy ct. Med Phys. 2016;43(10):5547–60.

    Article  Google Scholar 

  • Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487–91.

    Article  CAS  Google Scholar 

  • Wolf R, Bortfeld T. An analytical solution to proton Bragg peak deflection in a magnetic field. Phys Med Biol. 2012;57(17):N329–37.

    Article  Google Scholar 

  • Yu JB, Soulos PR, Herrin J, Cramer LD, Potosky AL, Roberts KB, Gross CP. Proton versus intensity-modulated radiotherapy for prostate cancer: patterns of care and early toxicity. J Natl Cancer Inst. 2013;105(1):25–32.

    Article  CAS  Google Scholar 

  • Zhu J, Penfold SN. Dosimetric comparison of stopping power calibration with dual-energy ct and single energy ct in proton therapy treatment planning. Med Phys. 2016;43(6):2845–54.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from NHMRC Programme Grant No. 1036078 and ARC Discovery Grant No. DP120100821. The author also acknowledges a research agreement with Ion Beam Applications (IBA) and helpful discussions with P. J. Keall and P. E. Metcalfe regarding the content of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oborn, B.M. (2019). Real-Time MRI-Guided Particle Therapy. In: Liney, G., van der Heide, U. (eds) MRI for Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-14442-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14442-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14441-8

  • Online ISBN: 978-3-030-14442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics