Skip to main content

An Efficient Anonymous Authentication Scheme Based on Double Authentication Preventing Signature for Mobile Healthcare Crowd Sensing

  • Conference paper
  • First Online:
Book cover Information Security and Cryptology (Inscrypt 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11449))

Included in the following conference series:

  • 1646 Accesses

Abstract

With the widespread growth of cloud computing and mobile healthcare crowd sensing (MHCS), an increasing number of individuals are outsourcing their masses of bio-information in the cloud server to achieve convenient and efficient. In this environment, Cloud Data Center (CDC) needs to authenticate masses of information without revealing owners’ sensitive information. However, tremendous communication cost, storage space cost and checking time cost lead to CDC that give rise to all kinds of privacy concerns as well. To mitigate these issues, To mitigate these issues, we propose a data anonymous batch verification scheme for MHCS based on a certificateless double authentication preventing aggregate signature. The proposed scheme can authenticate all sensing bio-information in a privacy preserving way. We then present that the proposed CL-DAPAS scheme is existentially unforgeable in the Random Oracle Model (ROM) assuming that Computational Diffie-Hellman problem is difficult to solve. Furthermore, we provide an implementation and evaluate performance of the proposed scheme and demonstrate that it achieves less efficient computational cost compared with some related schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–37 (2011)

    Article  Google Scholar 

  2. Pryss, R., Reichert, M., Herrmann, J., Langguth, B., Schlee, W.: Mobile crowd sensing in clinical and psychological trials – a case study. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 23–24 (2015)

    Google Scholar 

  3. Liu, J., Cao, H., Li, Q., Cai, F., Du, X., Gui, M.: A large-scale concurrent data Anonymous batch verification scheme for mobile healthcare crowd sensing. IEEE Internet Things J. (2018). https://doi.org/10.1109/JIOT.2018.2828463

  4. Zhang, H., Zhang, Q., Du, X.: Toward vehicle-assisted cloud computing for smartphones. IEEE Trans. Veh. Technol. 12(64), 5610–5618 (2015)

    Article  Google Scholar 

  5. Li, J., Chen, X., Chow, S.S.M., Huang, Q., Wong, D.S., Liu, Z.: Multi-authority fine-grained access control with accountability and its application in cloud. J. Netw. Comput. Appl. https://doi.org/10.1016/j.jnca.2018.03.006

    Article  Google Scholar 

  6. Li, T., Li, J., Liu, Z., Li, P., Jia, C.: Differentially private naive bayes learning over multiple data sources. Inf. Sci. 444, 89–104 (2018)

    Article  MathSciNet  Google Scholar 

  7. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 767–778 (2017)

    Article  Google Scholar 

  8. Li, Y., Yu, Y., Susilo, W., Min, G., Ni, J., Choo, R.: Fuzzy identity-based data integrity auditing for reliable cloud storage systems. IEEE Trans. Dependable Secur. Comput. 16(1), 72–83 (2019)

    Article  Google Scholar 

  9. Yu, Y., Li, Y., Yang, B., Susilo, W., Yang, G., Bai, J.: Attribute-based cloud data integrity auditing for secure outsourced storage. IEEE Trans. Emerg. Top. Comput. https://doi.org/10.1109/TETC.2017.2759329

  10. Xue, L., Yu, Y., Li, Y., Au, M.H., Du, X., Yang, B.: Efficient attribute-based encryption with attribute revocation for assured data deletion. Inf. Sci. 479, 640–650 (2019)

    Article  MathSciNet  Google Scholar 

  11. He, D., Chan, S., Guizani, M.: User privacy and data trustworthiness in mobile crowd sensing. IEEE Wirel. Commun. 22(1), 28–34 (2015)

    Article  Google Scholar 

  12. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: Security, privacy, and incentive provision for mobile crowd sensing systems. IEEE Internet Things J. 3(5), 839–853 (2016)

    Article  Google Scholar 

  13. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., Shen, X.S.: Security and privacy in smart city applications: challenges and solutions. IEEE Commun. Mag. 55(1), 122–129 (2017)

    Article  Google Scholar 

  14. Ni, J., Zhang, K., Yu, Y., Lin, X., Shen, X.S.: Providing task allocation and secure deduplication for mobile crowdsensing via fog computing. IEEE Trans. Dependable Secur. Comput. 1–12 (2018). https://doi.org/10.1109/TDSC.2018.2791432

  15. Xiao, Y., Rayi, V., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. J. Comput. Commun. 30(11–12), 2314–2341 (2007)

    Article  Google Scholar 

  16. Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

    Article  Google Scholar 

  17. Du, X., Chen, H.H.: Security in wireless sensor networks. IEEE Wirel. Commun. Mag. 15(4), 60–66 (2008)

    Article  Google Scholar 

  18. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: Transactions papers, a routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networks. IEEE Trans. Wirel. Commun. 8(3), 1223–1229 (2009)

    Article  Google Scholar 

  19. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  Google Scholar 

  20. Xiong, H., Guan, Z., Chen, Z., Li, F.: An efficient certificateless aggregate signature with constant pairing computations. Inf. Sci. 219, 225–235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, L., Ma, J., Liu, X., Wei, F., Miao, M.: A secure and efficient id-based aggregate signature scheme for wireless sensor networks. IEEE Internet Things J. 4(2), 546–554 (2017)

    Article  Google Scholar 

  22. Kumar, P., Kumari, S., Sharma, V., Sangaiah, A.K., Wei, J., Li, X.: A certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inform. Syst. 18, 80–89 (2018)

    Google Scholar 

  23. Zhang, L., Zhang, F.: A new certificateless aggregate signature scheme. Comput. Commun. 32(6), 1079–1085 (2009)

    Article  MathSciNet  Google Scholar 

  24. Deng, J., Xu, C., Wu, H., Dong, L.: A new certificateless signature with enhanced security and aggregation version. Concurr. Comput. Pract. Exp. 28(4), 1124–1133 (2016)

    Article  Google Scholar 

  25. Gong, Z., Long, Y., Hong, X., Chen, K.: Two certificateless aggregate signatures from bilinear maps. In: IEEE SNPD 2007, vol. 3, pp. 188–193 (2007)

    Google Scholar 

  26. Au, M.H., Yang, G., Susilo, W., Zhang, Y.: (Strong) Multidesignated verifiers signatures secure against rogue key attack. Concurr. Comput. Pract. Exp. 26(8), 1574–1592 (2014)

    Article  Google Scholar 

  27. Tu, H., He, D., Huang, B.: Reattack of a certificateless aggregate signature scheme with constant pairing computations. Sci. World J. 2014, 1–9 (2014)

    Google Scholar 

  28. Malhi, A.K., Batra, S.: An efficient certificateless aggregate signature scheme for vehicular ad-hoc networks. Discret. Math. Theor. Comput. Sci. 17(1), 317–320 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Bayat, M., Barmshoory, M., Rahimi, M., Aref, M.R.: A secure authentication scheme for VANETs with batch verification. Wirel. Netw. 21(5), 1–11 (2014)

    Google Scholar 

  30. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  31. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-iff-linked ring signature with constant-size construction. Theory Comput. Sci. 469, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp. 436–453. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_25

    Chapter  Google Scholar 

  33. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_5

    Chapter  Google Scholar 

  34. Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_23

    Chapter  Google Scholar 

  35. Mao, S., Zhang, P., Wang, H., Zhang, H., Wu, W.: Cryptanalysis of a lattice based key exchange protocol. Sci. China Inf. Sci. 60(2), 028101–028105 (2017)

    Article  Google Scholar 

  36. Wu, W., Zhang, H., Wang, H., Mao, S., Wu, S., Han, H.: Cryptanalysis of an MOR cryptosystem based on a finite associative algebra. Sci. China Inf. Sci. 59(3), 32111 (2016)

    Article  Google Scholar 

  37. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signatures: new schemes and security models. Comput. J. 55(4), 457–474 (2011)

    Article  Google Scholar 

  38. He, D., Zeadally, S., Xu, B., Huang, X.: An efficient identity-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Trans. Inf. Forensics Secur. 10(12), 2681–2691 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their constructive comments and suggestions. This work was supported by National Key R&D Program of China (2017YFB0802000), National Natural Science Foundation of China (61772326, 61572303, 61872229, 61802239), NSFC Research Fund for International Young Scientists (61750110528), National Cryptography Development Fund during the 13th Five-year Plan Period (MMJJ20170216, MMJJ201701304), Foundation of State Key Laboratory of Information Security (2017-MS-03), Fundamental Research Funds for the Central Universities(GK201702004, GK201803061, 2018CBLY006) and China Postdoctoral Science Foundation (2018M631121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Yu, Y., Li, Y., Zhao, Y., Du, X. (2019). An Efficient Anonymous Authentication Scheme Based on Double Authentication Preventing Signature for Mobile Healthcare Crowd Sensing. In: Guo, F., Huang, X., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2018. Lecture Notes in Computer Science(), vol 11449. Springer, Cham. https://doi.org/10.1007/978-3-030-14234-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14234-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14233-9

  • Online ISBN: 978-3-030-14234-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics