Skip to main content

Bioremediation of Municipal Sewage Using Potential Microalgae

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Rapid urbanization has resulted in an increase of municipal sewage discharge, which, in turn, has added load and cost to the conventional water treatment processes. The composition of municipal sewage mostly contains natural inorganic and organic minerals as well as synthetic compounds. Microalgae utilize these wastes as nutritional sources and hence could be used as an interesting step to improve the quality of sewage. Though there are some natural algal flora existing in sewage, few selective and efficient strains could be used in this purpose. They are non-pathogenic and have the potential to eliminate pathogens by competitive growth. Moreover, they could reduce biological and chemical oxygen demand of water as well as remove heavy metals by algal metabolism. Unlike conventional methods, it requires low operational and maintenance cost and no use of hazardous chemicals for water treatment. Additionally, the biomass could be utilized to generate value-added products such as bioenergy, pharmaceuticals, nutraceuticals, etc. However, land requirement, difficulties in the growth of pure strains, variation in environmental factors, eutrophication, self-shading and difficulties in the harvesting of biomass are some of the bottlenecks of this process. With recent advances in scientific knowledge, sophisticated techniques and environmental awareness, microalgae could offer a sustainable, environment-friendly solution to treat wastewater which could be further enhanced by the addition of other organisms and aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    CAS  Google Scholar 

  • Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6(3):230–237

    CAS  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    CAS  Google Scholar 

  • Anonymous (2008) MOEF, Government of India. National Urban Sanitation Policy

    Google Scholar 

  • Ansari AA, Khoja AH, Nawar A et al (2017) Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Appl Water Sci 7(7):4151–4158

    CAS  Google Scholar 

  • Arceivala SJ, Asolekar SR (2010) Wastewater treatment for pollution control and reuse. Tata McGraw Hill Education Pvt Ltd, New Delhi

    Google Scholar 

  • Azov Y, Shelef G (1987) The effect of pH on the performance of high-rate oxidation ponds. Water Sci Technol 19(12):381–383

    CAS  Google Scholar 

  • Barbosa RA, Sant’Anna GL Jr (1989) Treatment of raw domestic sewage in an UASB reactor. Water Res 23(12):1483–1490

    CAS  Google Scholar 

  • Berger MR, Schmähl D, Edler L (1990) Implications of the carcinogenic hazard of low doses of three hepatocarcinogenic N- Nitrosamines. Cancer Sci 81(6–7):598–606

    CAS  Google Scholar 

  • Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr (III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145(1–2):142–147

    CAS  Google Scholar 

  • Bishop WM, Zubeck HM (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2(5):1–6

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bosman J, Hendricks F (1980) The development of an algal pond system for the removal of nitrogen from an inorganic industrial; effluent. In: Proceedings of international symposium on aquaculture in wastewater NIWP. CSIR, Pretoria, pp 26–35

    Google Scholar 

  • Chevalier P, de la Noue J (1985) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzym Microb Technol 7(12):621–624

    CAS  Google Scholar 

  • Choksi KN, Sheth MA, Mehta D (2015) To evaluate the performance of sewage treatment plant: a case study of Surat city. Int J Eng Technol 2(8):1076–1080

    Google Scholar 

  • Colak O, Kaya Z (1988) A study on the possibilities of biological wastewater treatment using algae. Doga Biyoloji Serisi 12:18–29

    Google Scholar 

  • Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151(1–3):73–78

    CAS  Google Scholar 

  • Dasgupta CN (2015) Algae as a source of phycocyanin and other industrially important pigments. In: Algal Biorefinery: An Integrated Approach. Springer, Cham, pp 253–276

    Google Scholar 

  • Dasgupta CN, Suseela MR, Mandotra SK et al (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 146:202–208

    CAS  Google Scholar 

  • de la Noue J, Basseres A (1989) Biotreatment of anaerobically digested swine manure with microalgae. Biol Wastes 29(1):17–31

    Google Scholar 

  • de la Noue J, de Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv 6(4):725–770

    Google Scholar 

  • de la Noue J, Proulx D (1988) Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 29(2–3):292–297

    Google Scholar 

  • de la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4(3):247–254

    Google Scholar 

  • de Pauw N, Van Vaerenbergh E (1983) Microalgal wastewater treatment systems: potentials and limits. In: Internation convention on Phytodepurization and the use of the produced biomass, Parma, pp 211–287

    Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473–3480

    CAS  Google Scholar 

  • Drizo AFCA, Frost CA, Smith KA et al (1997) Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Sci Technol 35(5):95–102

    CAS  Google Scholar 

  • El-Enany AE, Issa AA (2000) Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ Toxicol Pharmacol 8(2):95–101

    CAS  Google Scholar 

  • Ergashev AE, Tajiev SH (1986) Seasonal variations of phytoplankton in a series of waste treatment lagoons (Chimkent, Central Asia) Part 2: Distribution of phytoplankton numbers and biomass. CLEAN–Soil, Air, Water 14(6):613–625

    Google Scholar 

  • Fierro S, del Pilar Sánchez-Saavedra M, Copalcua C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99(5): 1274–1279

    Google Scholar 

  • Fogg GE (1975) Primary productivity. Chem Oceanogr 2:385–453

    CAS  Google Scholar 

  • Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods - a review. Renew Sustain Energy Rev 12(1):116–140

    CAS  Google Scholar 

  • Garbisu C, Hall DO, Serra JL (1993) Removal of phosphate by foam immobilized Phormidium laminosum in batch and continuous flow bioreactors. J Chem Technol Biotechnol 57(2):181–189

    CAS  Google Scholar 

  • Garbisu C, Hall DO, Llama MJ et al (1994) Inorganic nitrogen and phosphate removal from water by free-living and polyvinyl-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. Enzym Microb Technol 16(5):395–401

    CAS  Google Scholar 

  • Gehm HW (1945) Characteristics of Sewage. Sewage Work J 17(5):984–987

    Google Scholar 

  • Gentili FG, Fick J (2017) Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J Appl Phycol 29(1):255–262

    CAS  Google Scholar 

  • González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Google Scholar 

  • Gray BE (1989) A primer on California water transfer law. Ariz L Rev 31:745–781

    Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition - mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Ames, pp 95–115

    Google Scholar 

  • Habib MAB, Parvin M, Huntington TC et al (2008) A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and agriculture organization of the United Nations. J Clean Prod 91:1–11

    Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99

    Google Scholar 

  • Hameed MSA (2002) Effect of immobilization on growth and photosynthesis of the green alga Chlorella vulgaris and its efficiency in heavy metals removal. Bull Fac Sci Assiut Univ 31(1-D):233–240

    CAS  Google Scholar 

  • Hamner S, Tripathi A, Mishra RK et al (2006) The role of water use patterns and sewage pollution in incidence of water-borne enteric diseases along the Ganges River in Varanasi, India. Int J Environ Health Res 16(2):113–132

    Google Scholar 

  • Hattab MA, Ghaly A, Hammoud A et al (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5(154):10–4172

    Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    CAS  Google Scholar 

  • Horan NJ (1989) Biological wastewater treatment systems: theory and operation. Wiley, New York

    Google Scholar 

  • Hvitved-Jacobsen T (1982) The impact of combined sewer overflows on the dissolved oxygen concentration of a river. Water Res 16(7):1099–1105

    CAS  Google Scholar 

  • Jensen A (1993) Present and future needs for algae and algal products. In: Fourteenth International Seaweed Symposium. Springer, Dordrecht, pp 15–23

    Google Scholar 

  • Kaur R, Wani SP, Singh AK et al (2012) Wastewater production, treatment and use in India. In National Report presented at the 2nd regional workshop on Safe Use of Wastewater in Agriculture

    Google Scholar 

  • Kiran B, Rani N, Kaushik A (2008) Chromium (VI) tolerance in two halotolerant strains of Nostoc. J Environ Biol 29(2):155–158

    CAS  Google Scholar 

  • Kshirsagar AD (2013) Bioremediation of wastewater by using microalgae: an experimental study. Int J Life Sci Biotechnol Pharm 2(3):339–346

    Google Scholar 

  • Kumar D, Gaur JP (2011) Chemical reaction and particle diffusion based kinetic modeling of metal biosorption by a Phormidium sp. dominated cyanobacterial mat. Bioresour Technol 102(2):633–640

    CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1996) Wastewater nutrients removal by Chlorella vulgaris: optimization through acclimation. Environ Technol 17(2):183–189

    CAS  Google Scholar 

  • Lazarevic D, Aoustin E, Buclet N et al (2010) Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour Conserv Recycl 55(2):246–259

    Google Scholar 

  • Li Y, Chen YF, Chen P et al (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    CAS  Google Scholar 

  • Lima SA, Raposo MFJ, Castro PM et al (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38(1):97–102

    CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150

    CAS  Google Scholar 

  • Malina JF, Yousef YA (1964) The fate of coliform organisms in waste stabilization ponds. J Water Pollut Control Fed 36:1432–1442

    CAS  Google Scholar 

  • Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9(2):196–201

    CAS  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    CAS  Google Scholar 

  • Meron A, Rebhun M, Sless B (1965) Quality changes as a function of detention time in wastewater stabilization ponds. J Water Pollut Control 37(12):1657–1670

    CAS  Google Scholar 

  • Miranda J, Krishnakumar G, Gonsalves R (2012) Cr 6+ bioremediation efficiency of Oscillatoria laetevirens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol 24(6):1439–1454

    CAS  Google Scholar 

  • Moawad SK (1968) Inhibition of coliform bacteria by algal population in microoxidation ponds. Environ Health 10(2):106–112

    Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae biomass; production and use. In: Shelef G, Soeder CJ (eds) National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge U.P., Cambridge, UK, pp 395–414

    Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2009) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25(9):1573–1578

    CAS  Google Scholar 

  • Monteiro CM, Fonseca SC, Castro PM et al (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23(1):97–103

    CAS  Google Scholar 

  • Moss B (1973) The influence of environmental factors on the distribution of freshwater algae: an experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. J Ecol 61(1):157–177

    CAS  Google Scholar 

  • Munir N, Imtiaz A, Sharif N, Naz S (2015) Optimization of growth conditions of different algal strains and determination of their lipid contents. J Anim Plant Sci 25(2):546–553

    CAS  Google Scholar 

  • Orhon D, Artan N, AteÅŸ E (1994) A description of three methods for the determination of the initial inert particulate chemical oxygen demand of wastewater. J Chem Technol Biotechnol 61(1):73–80

    CAS  Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122(1):73–105

    Google Scholar 

  • Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5(1):78–82

    CAS  Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol 5:75–80

    Google Scholar 

  • Parhad NM, Rao NU (1976) Decrease of bacterial content in different types of stabilization ponds. Indian J Environ Health 18(1):33–46

    Google Scholar 

  • Patil PN, Sawant DV, Deshmukh RN (2012) Physico-chemical parameters for testing of water – A review. Int J Environ Sci 3(3):1194–1207

    CAS  Google Scholar 

  • Phang SM (1990) Algal production from agro-industrial and agricultural wastes in Malaysia. Ambio 19:415–418

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    CAS  Google Scholar 

  • Przytocka-Jusiak M, Duszota M, Matusiak K et al (1984) Intensive culture of Chlorella vulgaris as the second stage of biological purification of nitrogen industry wastewaters. Water Res 18(1):1–7

    CAS  Google Scholar 

  • Ras M, Lardon L, Bruno S et al (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G et al (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1–4):195–214

    CAS  Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Methods of soil analysis part 3, chemical methods. Soil Science Society of America and American Society of Agronomy, USA, pp 417–435

    Google Scholar 

  • Rogers HR (1996) Sources, behavior and fate of organic contaminants during sewage treatment and in sewage sledges. Sci Total Environ 185(1–3):3–26

    CAS  Google Scholar 

  • Romera E, González F, Ballester A et al (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    CAS  Google Scholar 

  • Rudolfs W, Falk L, Ragotzkie RA (1950) Literature review on the occurrence and survival of enteric, pathogenic, and relative organisms in soil, water, sewage, and sludges, and on vegetation: I. Bacterial and virus diseases. Sewage and Industrial Wastes, Water Environment Federation, New Jersey, pp 1261–1281

    Google Scholar 

  • Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49(4):463–468

    CAS  Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF et al (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5(2–3):113–123

    CAS  Google Scholar 

  • Sebastian S, Nair KVK (1984) Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut A - Ecol Biol 34(3):197–206

    CAS  Google Scholar 

  • Sengar RMS, Singh KK, Singh S (2011) Application of phycoremediation technology in the treatment of sewage water to reduce pollution load. Ind J Sci Res 2(4):33–39

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J et al (1998) Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report (No. NREL/TP-580-24190). National Renewable Energy Lab., Golden, CO. (US)

    Google Scholar 

  • Shelef G, Moraine R, Meydan A, Sandbank E (1977) Combined algae production-wastewater treatment and reclamation systems. In: Microbial energy conversion. American Society for Microbiology, USA, pp 427–442

    Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    CAS  Google Scholar 

  • Singh SK, Bansal A, Jha MK et al (2012) An integrated approach to remove Cr (VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresour Technol 104:257–265

    CAS  Google Scholar 

  • Singh S, Ghosh NC, Krishan G et al (2015) Development of an overall water quality index (OWQI) for surface water in Indian context. Curr World Environ 10(3):813–822

    Google Scholar 

  • Sivasubramanian V (2006) Phycoremediation of industrial effluents. http://phycoremediation.in/projects.html

  • Sivasubramanian V, Subramanian VV, Muthukumaran M et al (2012) Algal technology for effective reduction of total hardness in wastewater and industrial effluents. Phykos 42(1):51–58

    Google Scholar 

  • Swetha C, Sirisha K, Swaminathan D, Sivasubramanian V (2016) Study on the treatment of dairy effluent using Chlorella vulgaris and production of biofuel (Algal treatment of dairy effluent). Biotechnol Ind J 21(1):12–17

    Google Scholar 

  • Sydney ED, Da Silva TE, Tokarski A et al (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88(10):3291–3294

    CAS  Google Scholar 

  • Talbot P, de la Noue J (1993) Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res 27(1):153–159

    CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58(1):19–34

    CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84(1):1–5

    CAS  Google Scholar 

  • Townsend SA, Boland KT, Wrigley TJ (1992) Factors contributing to a fish kill in the Australian wet/dry tropics. Water Res 26(8):1039–1044

    CAS  Google Scholar 

  • Tubea B, Hawxby K, Mehta R (1981) The effects of nutrient, pH and herbicide levels on algal growth. Hydrobiol 79(3):221–227

    CAS  Google Scholar 

  • Vignesh MS, Shivsankar R, Rao PR et al (2006) Phycoremediation of effluent from tannery and pharmaceutical industries – a lab study. Ind Hydrobiol 9(1):51–60

    Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(3):218–227

    CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    CAS  Google Scholar 

  • Wang L, Min M, Li Y et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    CAS  Google Scholar 

  • Wang HMD, Chen CC, Huynh P et al (2015) Exploring the potential of using algae in cosmetics. Bioresour Technol 184:355–362

    CAS  Google Scholar 

  • Webber J (1972) Effects of toxic metals in sewage on crops. Water Pollut Control 71(4):404–413

    CAS  Google Scholar 

  • Westholm LJ (2006) Substrates for phosphorus removal – potential benefits for on-site wastewater treatment. Water Res 40(1):23–36

    Google Scholar 

  • Woertz I, Feffer A, Lundquist T et al (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    CAS  Google Scholar 

  • Zhou GJ, Peng FQ, Zhang LJ et al (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Sci Pollut Res 19(7):2918–2929

    CAS  Google Scholar 

  • Zhu Z, Liu J (2008) Remote monitoring system of urban sewage treatment based on Internet. In: Automation and logistics, 2008. ICAL 2008. IEEE International Conference on IEEE, pp 1151–1155

    Google Scholar 

Download references

Acknowledgements

We thank the Director of CSIR-NBRI for providing laboratory facilities to Indo-US Science and Technology Forum, New Delhi, for the financial assistance under i-CRAFT project; to CSIR-Scientist’s Pool Scheme; to authorities of 345 MLD Bharwara Sewage Treatment Plant, Lucknow; and to Mr. Gurubachan and other members of Algology Laboratory for their cooperation during the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasgupta, C.N., Toppo, K., Nayaka, S., Singh, A.K. (2019). Bioremediation of Municipal Sewage Using Potential Microalgae. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_7

Download citation

Publish with us

Policies and ethics