Skip to main content

Can We Fabricate That Fibre?

  • Conference paper
  • First Online:
  • 577 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

Abstract

This paper reviews the development of an efficient mathematical model for the drawing of optical fibres using extensional flow theory which is applicable for fibres of arbitrary geometry. The model is comprised of a 1D axial stretching problem describing the change in area of the cross-section from preform to fibre coupled with a 2D cross-plane problem describing the evolution of a cross-section. The solution of the axial stretching problem may be written in an exact form while the cross-plane problem must, in general, be solved numerically. The model may be used to solve forward and inverse problems and gives results that compare well with experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buchak, P., Crowdy, D.G., Stokes, Y.M., Ebendorff-Heidepriem, H.: Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 5–38 (2015). https://doi.org/10.1017/jfm.2015.337

    Article  MATH  Google Scholar 

  2. Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech. 783, 137–165 (2015). https://doi.org/10.1017/jfm.2015.570

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, M.J., Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Asymptotic modelling of a six-hole MOF. J. Lightwave Tech. 34, 5651–5656 (2016). https://doi.org/10.1109/JLT.2016.2628438

    Article  Google Scholar 

  4. Crowdy, D.G.: An elliptical-pore model of late-stage planar viscous sintering. J. Fluid Mech. 501, 251–277 (2004). https://doi.org/10.1017/S0022112003007559

    Article  MathSciNet  MATH  Google Scholar 

  5. Cummings, L.J., Howell, P.D.: On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361–389 (1999). https://doi.org/10.1017/S0022112099005030

    Article  MathSciNet  MATH  Google Scholar 

  6. Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992). https://doi.org/10.1017/S0022112092003094

    Article  MathSciNet  MATH  Google Scholar 

  7. Dewynne, J.N., Howell, P.D., Wilmott, P.: Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Math. 47, 541–555 (1994). https://doi.org/10.1093/qjmam/47.4.541

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P., Richardson, D.A.: The mathematical modelling of capillary drawing for holey fibre manufacture. J. Eng. Maths 43, 201–227 (2002). https://doi.org/10.1023/A:1020328606157

    Article  MathSciNet  MATH  Google Scholar 

  9. Griffiths, I.M., Howell, P.D.: Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181–206 (2008). https://doi.org/10.1017/S002211200800147X

    Article  MathSciNet  MATH  Google Scholar 

  10. Institute for Photonics and Advanced Sensing: Research themes (2017). https://www.adelaide.edu.au/ipas/research/, viewed 19 November 2017

  11. Knight, J.C.: Photonic crystal fibres. Nature 424, 847–851 (2003). https://doi.org/10.1038/nature01940

    Article  Google Scholar 

  12. Luzi, G., Epple, P., Scharrer, M., Fujimoto, K., Rauh, C., Delgado, A.: Numerical solution and experimental validation of the drawing process of six-hole optical fibers including the effects of inner pressure and surface tension. J. Lightwave Technol. 30, 1306–1311 (2012). https://doi.org/10.1109/JLT.2012.2185486

    Article  Google Scholar 

  13. Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline; steady-state isothermal viscous flows. Ind. Eng. Chem. Fund. 8, 512–520 (1969). https://doi.org/10.1021/i160031a023

    Article  Google Scholar 

  14. Pearson, J.R.A., Petrie, C.J.S.: The flow of a tubular film. Part 2 Interpretation of the model and discussion of solutions. J. Fluid Mech. 42, 609–625 (1970). https://doi.org/10.1017/S0022112070001507

  15. Stokes, Y.M., Buchak, P., Crowdy, D.G., Ebendorff-Heidepriem, H.: Drawing of microstructured fibres: circular and noncircular tubes. J. Fluid Mech. 755, 176–203 (2014). https://doi.org/10.1017/jfm.2014.408

    Article  MathSciNet  MATH  Google Scholar 

  16. Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part I: problem formulation and numerical modelling of transient draw process. J. Lightwave Technol. 23, 2245–2254 (2015). https://doi.org/10.1109/JLT.2005.850055

    Article  Google Scholar 

  17. Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J., Poladian, L.: Fabrication of microstructured optical fibres - part II: numerical modelling of steady-state draw process. J. Lightwave Technol. 23, 2255–2266 (2015). https://doi.org/10.1109/JLT.2005.850058

    Article  Google Scholar 

  18. Yarin, A.L.: Surface-tension-driven flows at low Reynolds number arising in optoelectronic technology. J. Fluid Mech. 286, 173–200 (1995). https://doi.org/10.1017/S0022112095000693

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne M. Stokes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stokes, Y.M., Crowdy, D.G., Ebendorff-Heidepriem, H., Buchak, P., Chen, M.J. (2019). Can We Fabricate That Fibre?. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics