Skip to main content

Learning Consistent Tree-Augmented Dynamic Bayesian Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11331))

Abstract

Dynamic Bayesian networks (DBNs) offer an approach that allows for causal and temporal dependencies between random variables repeatedly measured over time. For this reason, they have been used in several domains such as medical prognostic predictions, meteorology and econometrics. Learning the intra-slice dependencies is, however, most of the times neglected. This is due to the inherent difficulty in dealing with cyclic dependencies. We propose an algorithm for learning optimal DBNs consistent with the tree-augmented network (tDBN). This algorithm uses the topological order induced by the tDBN to increase its search space exponentially while keeping the time complexity polynomial.

This work was supported through FCT, under contract IT (UID/EEA/50008/2013), and by projects PERSEIDS (PTDC/EMS-SIS/0642/2014), NEUROCLINOMICS2 (PTDC/EEI-SII/1937/2014), and internal IT projects QBigData and RAPID.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://margaridanarsousa.github.io/learn_cDBN/.

References

  1. Carvalho, A.M.: Scoring functions for learning Bayesian networks. INESC-ID Technical Report, 12 (2009)

    Google Scholar 

  2. Carvalho, A.M., Adão, P., Mateus, P.: Efficient approximation of the conditional relative entropy with applications to discriminative learning of Bayesian network classifiers. Entropy 15(7), 2716–2735 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carvalho, A.M., Adão, P., Mateus, P.: Hybrid learning of Bayesian multinets for binary classification. Pattern Recogn. 47(10), 3438–3450 (2014)

    Article  MATH  Google Scholar 

  4. Carvalho, A.M., Oliveira, A.L.: Learning Bayesian networks consistent with the optimal branching. In: Proceedings of the ICMLA 2007, pp. 369–374. IEEE (2007)

    Google Scholar 

  5. Carvalho, A.M., Roos, T., Oliveira, A.L., Myllymäki, P.: Discriminative learning of Bayesian networks via factorized conditional log-likelihood. J. Mach. Learn. Res. 12, 2181–2210 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Charniak, E.: Bayesian networks without tears. AI Mag. 12(4), 50–63 (1991)

    Google Scholar 

  7. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data: Artificial Intelligence and Statistics, vol. 112, pp. 121–130. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-2404-4_12

    Chapter  Google Scholar 

  8. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theor. 14(3), 462–467 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  11. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dojer, N.: Learning Bayesian networks does not have to be NP-hard. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 305–314. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_27

    Chapter  Google Scholar 

  13. Edmonds, J.: Optimum branchings. Math. Decis. Sci. Part 1, 335–345 (1968)

    MATH  Google Scholar 

  14. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings UAI 1998, pp. 139–147 (1998)

    Google Scholar 

  15. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  17. Monteiro, J.L., Vinga, S., Carvalho, A.M.: Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks. In: Proceedings of the UAI 2015, pp. 622–631 (2015)

    Google Scholar 

  18. Murphy, K.P.: The Bayes net toolbox for MATLAB. Comput. Sci. Stat. 33, 2001 (2001)

    Google Scholar 

  19. Murphy, K.P., Russell, S.: Dynamic Bayesian Networks: Representation, Inference and Learning (2002)

    Google Scholar 

  20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)

    MATH  Google Scholar 

  21. Rissanen, J.: Minimum Description Length Principle. Wiley, Hoboken (1985)

    Google Scholar 

  22. Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: Polynomial time algorithm for learning globally optimal dynamic Bayesian network. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7064, pp. 719–729. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24965-5_81

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra M. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, M., Carvalho, A.M. (2019). Learning Consistent Tree-Augmented Dynamic Bayesian Networks. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science(), vol 11331. Springer, Cham. https://doi.org/10.1007/978-3-030-13709-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13709-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13708-3

  • Online ISBN: 978-3-030-13709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics