Skip to main content

Other Assisted Hybrid Micromachining Processes

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

One or several types of energy is superimposed on the conventional micromachining process in assisted variant of hybrid micromachining process. Energy from sources like laser, magnetic field, ultrasonic vibration, etc., are superimposed resulting in improved micromachining processes. The present chapter outlines and discusses some of the major assisted micromachining processes such as vibration-assisted variant of hybrid micromachining, external electric field assisted micromachining, and carbon nanofiber assisted micromachining processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • S. Amini, M. Soleimani, H. Paktinat, M. Lotfi, Effect of longitudinal—torsional vibration in ultrasonic-assisted drilling. Mater. Manuf. Processes 32(6), 616–622 (2017)

    Article  Google Scholar 

  • A.H. Ammouri, R.F. Hamade, BUEVA: a bi-directional ultrasonic elliptical vibration actuator for micromachining. Int. J. Adv. Manuf. Technol. 58(9–12), 991–1001 (2012)

    Article  Google Scholar 

  • B. Azarhoushang, J. Akbari, Ultrasonic-assisted drilling of Inconel 738-LC. Int. J. Mach. Tools Manuf. 47(7–8), 1027–1033 (2007)

    Article  Google Scholar 

  • D.E. Brehl, T.A. Dow, 3-D microstructure creation using elliptical vibration-assisted machining. ASPE Proc. Vibr. Assist. Mach. Technol. 21, 26 (2007)

    Google Scholar 

  • D.E. Brehl, T.A. Dow, Review of vibration-assisted machining. Precis. Eng. 32(3), 153–172 (2008)

    Article  Google Scholar 

  • B.C. Brocato, Micromachining using EVAM (Elliptical Vibration Assisted Machining) (2005)

    Google Scholar 

  • S.K. Chee, H. Suzuki, M. Okada, T. Yano, T. Higuchi, W.M. Lin, Precision polishing of micro mold by using piezoelectric actuator incorporated with mechanical amplitude magnified mechanism, in Advanced Materials Research, vol. 325 (Trans Tech Publications, 2011), pp. 470–475

    Google Scholar 

  • H. Chen, M. Cheng, Y. Li, D. Zhang, Development of integrated precision vibration-assisted micro-engraving system. Trans. Tianjin Univ. 17(4), 242 (2011)

    Article  Google Scholar 

  • W. Chen, X. Teng, L. Zheng, W. Xie, D. Huo, Burr reduction mechanism in vibration-assisted micro milling. Manuf. Lett. 16, 6–9 (2018)

    Article  Google Scholar 

  • G.L. Chern, Y.C. Chang, Using two-dimensional vibration cutting for micro-milling. Int. J. Mach. Tools Manuf. 46(6), 659–666 (2006)

    Article  Google Scholar 

  • G.L. Chern, H.J. Lee, Using workpiece vibration cutting for micro-drilling. Int. J. Adv. Manuf. Technol. 27(7–8), 688–692 (2006)

    Article  Google Scholar 

  • K. Egashira, K. Mizutani, T. Nagao, Ultrasonic vibration drilling of microholes in glass. CIRP Ann. Manuf. Technol. 51(1), 339–342 (2002)

    Article  Google Scholar 

  • T. Endo, T. Tsujimoto, K. Mitsui, Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008)

    Article  Google Scholar 

  • C.R. Friedrich, P.J. Coane, M.J. Vasile, Micromilling development and applications for microfabrication. Microelectron. Eng. 35(1–4), 367–372 (1997)

    Article  Google Scholar 

  • C. Gao, Z. Liu, A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J. Mater. Process. Technol. 139(1–3), 226–228 (2003)

    Article  Google Scholar 

  • D. Ghiculescu, N.I. Marinescu, S. Nanu, D. Ghiculescu, G. Kakarelidis, FEM study of synchronization between pulses and tool oscillations at ultrasonic aided microelectrodischarge machining. Rev. Tehnol. Neconventionale 14(3), 19 (2010)

    Google Scholar 

  • B. Ghoshal, B. Bhattacharyya, Influence of vibration on micro-tool fabrication by electrochemical machining. Int. J. Mach. Tools Manuf. 64, 49–59 (2013)

    Article  Google Scholar 

  • B. Ghoshal, B. Bhattacharyya, Shape control in micro borehole generation by EMM with the assistance of vibration of tool. Precis. Eng. 38(1), 127–137 (2014)

    Article  Google Scholar 

  • B. Ghoshal, B. Bhattacharyya, Vibration assisted electrochemical micromachining of high aspect ratio micro features. Precis. Eng. 42, 231–241 (2015)

    Article  Google Scholar 

  • K.T. Hoang, S.H. Yang, A study on the effect of different vibration-assisted methods in micro-WEDM. J. Mater. Process. Technol. 213(9), 1616–1622 (2013)

    Article  Google Scholar 

  • A.W.J. Hsue, J.J. Wang, C.H. Chang, Milling tool of micro-EDM by ultrasonic assisted multi-axial wire electrical discharge grinding processes. in ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (American Society of Mechanical Engineers, 2012), pp. 473-479

    Google Scholar 

  • H. Huang, H. Zhang, L. Zhou, H.Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. J. Micromech. Microeng. 13(5), 693 (2003)

    Article  Google Scholar 

  • J.C. Hung, J.K. Lin, B.H. Yan, H.S. Liu, P.H. Ho, Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J. Micromech. Microeng. 16(12), 2705 (2006)

    Article  Google Scholar 

  • D. Huo, Micro-cutting: Fundamentals and Applications (Wiley, 2013)

    Google Scholar 

  • T. Ichikawa, W. Natsu, Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Proc. CIRP 6, 326–331 (2013)

    Article  Google Scholar 

  • M.P. Jahan, T. Saleh, M. Rahman, Y.S. Wong, Development, modeling, and experimental investigation of low frequency workpiece vibration-assisted micro-EDM of tungsten carbide. J. Manuf. Sci. Eng. 132(5), 054503 (2010a)

    Article  Google Scholar 

  • M.P. Jahan, M. Rahman, Y.S. Wong, L. Fuhua, On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 224(5), 795–814 (2010b)

    Article  Google Scholar 

  • M.P. Jahan, T. Saleh, M. Rahman, Y.S. Wong, Study of micro-EDM of tungsten carbide with workpiece vibration, in Advanced Materials Research, vol. 264, (Trans Tech Publications, 2011), pp. 1056–1061

    Google Scholar 

  • M.P. Jahan, Y.S. Wong, M. Rahman, Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J. Manuf. Process. 14(3), 343–359 (2012)

    Article  Google Scholar 

  • S.U. Je, H.S. Lee, C.N. Chu, D.W. Kim, Micro EDM with ultrasonic work fluid vibration for deep hole machining. J. Kor. Soc. Precis. Eng. 22(7), 47–53 (2005)

    Google Scholar 

  • B. Kang, G.W. Kim, M. Yang, S.H. Cho, J.K. Park, A study on the effect of ultrasonic vibration in nanosecond laser machining. Opt. Lasers Eng. 50(12), 1817–1822 (2012)

    Article  Google Scholar 

  • G.D. Kim, B.G. Loh, Direct machining of micro patterns on nickel alloy and mold steel by vibration assisted cutting. Int. J. Precis. Eng. Manuf. 12(4), 583–588 (2011)

    Article  Google Scholar 

  • G.D. Kim, B.G. Loh, Cutting force variation with respect to tilt angle of trajectory in elliptical vibration V-grooving. Int. J. Precis. Eng. Manuf. 14(10), 1861–1864 (2013)

    Article  Google Scholar 

  • D.J. Kim, S.M. Yi, Y.S. Lee, C.N. Chu, Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. J. Micromech. Microeng. 16(5), 1092 (2006)

    Article  Google Scholar 

  • T. Koyano, M. Kunieda, Ultra-short pulse ECM using electrostatic induction feeding method. Proc. CIRP 6, 390–394 (2013)

    Article  Google Scholar 

  • B. Lauwers, Surface integrity in hybrid machining processes. Procedia Eng. 19, 241–251 (2011)

    Article  Google Scholar 

  • J.S. Lee, D.W. Lee, Y.H. Jung, W.S. Chung, A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. J. Mater. Process. Technol. 130, 396–400 (2002)

    Article  Google Scholar 

  • K.M. Li, S.L. Wang, Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 228(6), 847–855 (2014)

    Article  Google Scholar 

  • C. Li, F. Zhang, B. Meng, L. Liu, X. Rao, Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram. Int. 43(3), 2981–2993 (2017)

    Article  Google Scholar 

  • H. Lian, Z. Guo, Z. Huang, Y. Tang, J. Song, Experimental research of Al6061 on ultrasonic vibration assisted micro-milling. Proc. CIRP 6, 561–564 (2013)

    Article  Google Scholar 

  • P.J. Liew, J. Yan, T. Kuriyagawa, Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J. Mater. Process. Technol. 213(7), 1076–1087 (2013)

    Article  Google Scholar 

  • M. Mahardika, G.S. Prihandana, T. Endo, T. Tsujimoto, N. Matsumoto, B. Arifvianto, K. Mitsui, The parameters evaluation and optimization of polycrystalline diamond micro-electrodischarge machining assisted by electrode tool vibration. Int. J. Adv. Manuf. Technol. 60(9–12), 985–993 (2012)

    Article  Google Scholar 

  • S. Mastud, M. Garg, R. Singh, J. Samuel, S. Joshi, Experimental characterization of vibration-assisted reverse micro electrical discharge machining (EDM) for surface texturing, in ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (American Society of Mechanical Engineers), pp. 439–448

    Google Scholar 

  • T. Moriwaki, E. Shamoto, Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann. Manuf. Technol. 40(1), 559–562 (1991)

    Article  Google Scholar 

  • M.D. Nguyen, Y. San Wong, M. Rahman, Profile error compensation in high precision 3D micro-EDM milling. Precis. Eng. 37(2), 399–407 (2013)

    Article  Google Scholar 

  • H. Onikura, O. Ohnishi, Y. Take, A. Kobayashi, Fabrication of micro carbide tools by ultrasonic vibration grinding. CIRP Ann. Manuf. Technol. 49(1), 257–260 (2000)

    Article  Google Scholar 

  • H. Onikura, R. Inoue, K. Okuno, O. Ohnishi, Fabrication of electroplated micro grinding wheels and manufacturing of microstructures with ultrasonic vibration, in Key Engineering Materials, vol. 238 (Trans Tech Publications, 2003), pp. 9–14

    Google Scholar 

  • J.-K. Park, J.-W. Yoon, M.-C. Kang, S.-H. Cho, Surface effects of hybrid vibration-assisted femtosecond laser system for micro-hole drilling of copper substrate. Trans. Nonferrous Met. Soc. China 22, s801–s807 (2012a)

    Article  Google Scholar 

  • J.K. Park, J.W. Yoon, S.H. Cho, Vibration assisted femtosecond laser machining on metal. Opt. Lasers Eng. 50(6), 833–837 (2012b)

    Article  Google Scholar 

  • M. Rahman, A.S. Kumar, J.R.S. Prakash, Micro milling of pure copper. J. Mater. Process. Technol. 116(1), 39–43 (2001)

    Article  Google Scholar 

  • P. Rodrigues, J.E. Labarga, Tool deflection model for micro milling process. Int. J. Adv. Manuf. Technol. 72(5), 1–9 (2014)

    Google Scholar 

  • A. Ruszaj, M. Zybura, R. Żurek, G. Skrabalak, Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 217(10), 1365–1371 (2003)

    Article  Google Scholar 

  • E. Shamoto, N. Suzuki, T. Moriwaki, Y. Naoi, Development of ultrasonic elliptical vibration controller for elliptical vibration cutting. CIRP Ann. Manuf. Technol. 51(1), 327–330 (2002)

    Article  Google Scholar 

  • H.S. Shin, M.S. Park, B.H. Kim, C.N. Chu, Recent researches in micro electrical machining. Int. J. Precis. Eng. Manuf. 12(2), 371–380 (2011)

    Article  Google Scholar 

  • H. Suzuki, T. Moriwaki, T. Okino, Y. Ando, Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold. CIRP Ann. Manuf. Technol. 55(1), 385–388 (2006)

    Article  Google Scholar 

  • H. Suzuki, T. Moriwaki, Y. Yamamoto, Y. Goto, Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Ann. Manuf. Technol. 56(1), 131–134 (2007)

    Article  Google Scholar 

  • H. Suzuki, S. Hamada, T. Okino, M. Kondo, Y. Yamagata, T. Higuchi, Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann. 59(1), 347–350 (2010)

    Article  Google Scholar 

  • T. Tawakoli, B. Azarhoushang, M. Rabiey, Ultrasonic assisted dry grinding of 42CrMo4. Int. J. Adv. Manuf. Technol. 42(9–10), 883–891 (2009)

    Article  Google Scholar 

  • E. Uhlmann, S. Piltz, K. Schauer, Micro milling of sintered tungsten–copper composite materials. J. Mater. Process. Technol. 167(2–3), 402–407 (2005)

    Article  Google Scholar 

  • A.C. Wang, B.H. Yan, X.T. Li, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int. J. Mach. Tools Manuf. 42(8), 915–923 (2002)

    Article  Google Scholar 

  • A. Weremczuk, R. Rusinek, J. Warminski, The concept of active elimination of vibrations in milling process. Proc. CIRP 31, 82–87 (2015)

    Article  Google Scholar 

  • M. Xiao, K. Sato, S. Karube, T. Soutome, The effect of tool nose radius in ultrasonic vibration cutting of hard metal. Int. J. Mach. Tools Manuf. 43(13), 1375–1382 (2003)

    Article  Google Scholar 

  • B. Xue, Y. Yan, J. Li, B. Yu, Z. Hu, X. Zhao, Q. Cai, Study on the micro-machining process with a micro three-sided pyramidal tip and the circular machining trajectory. J. Mater. Process. Technol. 217, 122–130 (2015)

    Article  Google Scholar 

  • Y.B. Zeng, Q. Yu, S.H. Wang, D. Zhu, Enhancement of mass transport in micro wire electrochemical machining. CIRP Ann. Manuf. Technol. 61(1), 195–198 (2012)

    Article  Google Scholar 

  • C. Zhang, E. Brinksmeier, R. Rentsch, Micro-USAL technique for the manufacture of high quality microstructures in brittle materials. Precis. Eng. 30(4), 362–372 (2006)

    Article  Google Scholar 

  • H.Y. Zheng, H. Huang, Ultrasonic vibration-assisted femtosecond laser machining of microholes. J. Micromech. Microeng. 17(8), N58 (2007)

    Article  Google Scholar 

  • H.Y. Zheng, Z.W. Jiang, Femtosecond laser micromachining of silicon with an external electric field. J. Micromech. Microeng. 20(1), 017001 (2009)

    Article  Google Scholar 

  • M. Zhou, Y.T. Eow, B.K.A. Ngoi, E.N. Lim, Vibration-assisted precision machining of steel with PCD tools. Mater. Manuf. Processes 18(5), 825–834 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhowmik, S., Zindani, D. (2019). Other Assisted Hybrid Micromachining Processes. In: Hybrid Micro-Machining Processes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-13039-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13039-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13038-1

  • Online ISBN: 978-3-030-13039-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics